L(s) = 1 | − 3-s + 9-s − 4·11-s − 2·13-s − 2·17-s + 4·19-s + 8·23-s − 27-s − 6·29-s + 8·31-s + 4·33-s + 6·37-s + 2·39-s − 6·41-s + 4·43-s − 7·49-s + 2·51-s − 2·53-s − 4·57-s − 4·59-s + 2·61-s − 4·67-s − 8·69-s + 8·71-s − 10·73-s − 8·79-s + 81-s + ⋯ |
L(s) = 1 | − 0.577·3-s + 1/3·9-s − 1.20·11-s − 0.554·13-s − 0.485·17-s + 0.917·19-s + 1.66·23-s − 0.192·27-s − 1.11·29-s + 1.43·31-s + 0.696·33-s + 0.986·37-s + 0.320·39-s − 0.937·41-s + 0.609·43-s − 49-s + 0.280·51-s − 0.274·53-s − 0.529·57-s − 0.520·59-s + 0.256·61-s − 0.488·67-s − 0.963·69-s + 0.949·71-s − 1.17·73-s − 0.900·79-s + 1/9·81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 + 4 T + p T^{2} \) |
| 13 | \( 1 + 2 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 - 4 T + p T^{2} \) |
| 23 | \( 1 - 8 T + p T^{2} \) |
| 29 | \( 1 + 6 T + p T^{2} \) |
| 31 | \( 1 - 8 T + p T^{2} \) |
| 37 | \( 1 - 6 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 - 4 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + 2 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 - 2 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 - 8 T + p T^{2} \) |
| 73 | \( 1 + 10 T + p T^{2} \) |
| 79 | \( 1 + 8 T + p T^{2} \) |
| 83 | \( 1 + 4 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.76762359658982396998333385003, −7.24118822048955879614406549551, −6.49464747752693623226397249889, −5.59404656438966764448272320215, −5.03318175754570901585796255083, −4.41965752635916350121091913407, −3.17819102794346399133173147888, −2.51429877325105654995284787549, −1.22863180219753375386002447637, 0,
1.22863180219753375386002447637, 2.51429877325105654995284787549, 3.17819102794346399133173147888, 4.41965752635916350121091913407, 5.03318175754570901585796255083, 5.59404656438966764448272320215, 6.49464747752693623226397249889, 7.24118822048955879614406549551, 7.76762359658982396998333385003