Properties

Label 2-480-5.4-c1-0-10
Degree $2$
Conductor $480$
Sign $-0.447 + 0.894i$
Analytic cond. $3.83281$
Root an. cond. $1.95775$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  i·3-s + (1 − 2i)5-s − 4i·7-s − 9-s + 4i·13-s + (−2 − i)15-s − 8·19-s − 4·21-s − 4i·23-s + (−3 − 4i)25-s + i·27-s + 6·29-s + 8·31-s + (−8 − 4i)35-s + 4i·37-s + ⋯
L(s)  = 1  − 0.577i·3-s + (0.447 − 0.894i)5-s − 1.51i·7-s − 0.333·9-s + 1.10i·13-s + (−0.516 − 0.258i)15-s − 1.83·19-s − 0.872·21-s − 0.834i·23-s + (−0.600 − 0.800i)25-s + 0.192i·27-s + 1.11·29-s + 1.43·31-s + (−1.35 − 0.676i)35-s + 0.657i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(480\)    =    \(2^{5} \cdot 3 \cdot 5\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(3.83281\)
Root analytic conductor: \(1.95775\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{480} (289, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 480,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.708958 - 1.14711i\)
\(L(\frac12)\) \(\approx\) \(0.708958 - 1.14711i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + iT \)
5 \( 1 + (-1 + 2i)T \)
good7 \( 1 + 4iT - 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 - 4iT - 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 + 8T + 19T^{2} \)
23 \( 1 + 4iT - 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 - 4iT - 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 + 4iT - 43T^{2} \)
47 \( 1 + 4iT - 47T^{2} \)
53 \( 1 + 12iT - 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 6T + 61T^{2} \)
67 \( 1 - 12iT - 67T^{2} \)
71 \( 1 - 16T + 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 - 12iT - 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.60034612058363192158274200886, −9.922414295394444478501342729305, −8.717041992659030265231901024847, −8.121187585531317711814726417526, −6.82159772057666119002449837992, −6.35466681614822261518805656337, −4.74413821504532104442114863720, −4.09900462851741552903729111613, −2.18094411208495541001292264158, −0.832206649013151396326080550604, 2.33571097080482315522199966525, 3.12495396796133784684915050699, 4.65534430363943296300570131916, 5.85715080165040228572494174744, 6.28535165740149600550140742612, 7.81086179628782486311194027225, 8.706711413662721585187756152851, 9.553699628350677336208885925654, 10.43933346297604854637444788363, 11.06399583628769522348420391225

Graph of the $Z$-function along the critical line