Properties

Label 2-480-1.1-c3-0-20
Degree $2$
Conductor $480$
Sign $-1$
Analytic cond. $28.3209$
Root an. cond. $5.32174$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s − 5·5-s − 8·7-s + 9·9-s + 4·11-s − 6·13-s − 15·15-s − 2·17-s − 16·19-s − 24·21-s − 60·23-s + 25·25-s + 27·27-s − 142·29-s − 176·31-s + 12·33-s + 40·35-s − 214·37-s − 18·39-s − 278·41-s − 68·43-s − 45·45-s + 116·47-s − 279·49-s − 6·51-s − 350·53-s − 20·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.431·7-s + 1/3·9-s + 0.109·11-s − 0.128·13-s − 0.258·15-s − 0.0285·17-s − 0.193·19-s − 0.249·21-s − 0.543·23-s + 1/5·25-s + 0.192·27-s − 0.909·29-s − 1.01·31-s + 0.0633·33-s + 0.193·35-s − 0.950·37-s − 0.0739·39-s − 1.05·41-s − 0.241·43-s − 0.149·45-s + 0.360·47-s − 0.813·49-s − 0.0164·51-s − 0.907·53-s − 0.0490·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(480\)    =    \(2^{5} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(28.3209\)
Root analytic conductor: \(5.32174\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 480,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p T \)
5 \( 1 + p T \)
good7 \( 1 + 8 T + p^{3} T^{2} \)
11 \( 1 - 4 T + p^{3} T^{2} \)
13 \( 1 + 6 T + p^{3} T^{2} \)
17 \( 1 + 2 T + p^{3} T^{2} \)
19 \( 1 + 16 T + p^{3} T^{2} \)
23 \( 1 + 60 T + p^{3} T^{2} \)
29 \( 1 + 142 T + p^{3} T^{2} \)
31 \( 1 + 176 T + p^{3} T^{2} \)
37 \( 1 + 214 T + p^{3} T^{2} \)
41 \( 1 + 278 T + p^{3} T^{2} \)
43 \( 1 + 68 T + p^{3} T^{2} \)
47 \( 1 - 116 T + p^{3} T^{2} \)
53 \( 1 + 350 T + p^{3} T^{2} \)
59 \( 1 - 684 T + p^{3} T^{2} \)
61 \( 1 + 394 T + p^{3} T^{2} \)
67 \( 1 - 108 T + p^{3} T^{2} \)
71 \( 1 + 96 T + p^{3} T^{2} \)
73 \( 1 + 398 T + p^{3} T^{2} \)
79 \( 1 - 136 T + p^{3} T^{2} \)
83 \( 1 - 436 T + p^{3} T^{2} \)
89 \( 1 + 750 T + p^{3} T^{2} \)
97 \( 1 - 82 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.03667066451914679545999361939, −9.200392894119146804153597059233, −8.350513642862924929963843508021, −7.44469801189638006812238885205, −6.57933110198190133414743920865, −5.32538360994380945831121853066, −4.05915449890457009034356986418, −3.20053686185766007100443328749, −1.81841197679123431491000146518, 0, 1.81841197679123431491000146518, 3.20053686185766007100443328749, 4.05915449890457009034356986418, 5.32538360994380945831121853066, 6.57933110198190133414743920865, 7.44469801189638006812238885205, 8.350513642862924929963843508021, 9.200392894119146804153597059233, 10.03667066451914679545999361939

Graph of the $Z$-function along the critical line