| L(s) = 1 | − 3·3-s + 5·5-s + 12.8·7-s + 9·9-s − 49.7·11-s − 52.6·13-s − 15·15-s + 84.6·17-s + 26.6·19-s − 38.6·21-s − 136.·23-s + 25·25-s − 27·27-s + 6·29-s − 47.1·31-s + 149.·33-s + 64.3·35-s + 344.·37-s + 157.·39-s − 43.2·41-s − 252·43-s + 45·45-s − 306.·47-s − 177.·49-s − 253.·51-s − 455.·53-s − 248.·55-s + ⋯ |
| L(s) = 1 | − 0.577·3-s + 0.447·5-s + 0.694·7-s + 0.333·9-s − 1.36·11-s − 1.12·13-s − 0.258·15-s + 1.20·17-s + 0.321·19-s − 0.401·21-s − 1.23·23-s + 0.200·25-s − 0.192·27-s + 0.0384·29-s − 0.273·31-s + 0.787·33-s + 0.310·35-s + 1.52·37-s + 0.647·39-s − 0.164·41-s − 0.893·43-s + 0.149·45-s − 0.949·47-s − 0.517·49-s − 0.696·51-s − 1.17·53-s − 0.609·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + 3T \) |
| 5 | \( 1 - 5T \) |
| good | 7 | \( 1 - 12.8T + 343T^{2} \) |
| 11 | \( 1 + 49.7T + 1.33e3T^{2} \) |
| 13 | \( 1 + 52.6T + 2.19e3T^{2} \) |
| 17 | \( 1 - 84.6T + 4.91e3T^{2} \) |
| 19 | \( 1 - 26.6T + 6.85e3T^{2} \) |
| 23 | \( 1 + 136.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 6T + 2.43e4T^{2} \) |
| 31 | \( 1 + 47.1T + 2.97e4T^{2} \) |
| 37 | \( 1 - 344.T + 5.06e4T^{2} \) |
| 41 | \( 1 + 43.2T + 6.89e4T^{2} \) |
| 43 | \( 1 + 252T + 7.95e4T^{2} \) |
| 47 | \( 1 + 306.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 455.T + 1.48e5T^{2} \) |
| 59 | \( 1 + 708.T + 2.05e5T^{2} \) |
| 61 | \( 1 + 652.T + 2.26e5T^{2} \) |
| 67 | \( 1 + 704.T + 3.00e5T^{2} \) |
| 71 | \( 1 - 531.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 57.6T + 3.89e5T^{2} \) |
| 79 | \( 1 + 429.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 227.T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.03e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 152.T + 9.12e5T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12675514174149793107067178293, −9.561318040725046652998552452494, −7.965548744086654878329407677904, −7.63688005568271908468890611083, −6.21075645635587949346423413074, −5.31151211498657731081616014945, −4.65360253937502290653323675092, −2.94663186834260237840644159464, −1.66411591858483710966643571588, 0,
1.66411591858483710966643571588, 2.94663186834260237840644159464, 4.65360253937502290653323675092, 5.31151211498657731081616014945, 6.21075645635587949346423413074, 7.63688005568271908468890611083, 7.965548744086654878329407677904, 9.561318040725046652998552452494, 10.12675514174149793107067178293