Properties

Label 2-480-1.1-c3-0-19
Degree $2$
Conductor $480$
Sign $-1$
Analytic cond. $28.3209$
Root an. cond. $5.32174$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 5·5-s + 12.8·7-s + 9·9-s − 49.7·11-s − 52.6·13-s − 15·15-s + 84.6·17-s + 26.6·19-s − 38.6·21-s − 136.·23-s + 25·25-s − 27·27-s + 6·29-s − 47.1·31-s + 149.·33-s + 64.3·35-s + 344.·37-s + 157.·39-s − 43.2·41-s − 252·43-s + 45·45-s − 306.·47-s − 177.·49-s − 253.·51-s − 455.·53-s − 248.·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.694·7-s + 0.333·9-s − 1.36·11-s − 1.12·13-s − 0.258·15-s + 1.20·17-s + 0.321·19-s − 0.401·21-s − 1.23·23-s + 0.200·25-s − 0.192·27-s + 0.0384·29-s − 0.273·31-s + 0.787·33-s + 0.310·35-s + 1.52·37-s + 0.647·39-s − 0.164·41-s − 0.893·43-s + 0.149·45-s − 0.949·47-s − 0.517·49-s − 0.696·51-s − 1.17·53-s − 0.609·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(480\)    =    \(2^{5} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(28.3209\)
Root analytic conductor: \(5.32174\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 480,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 - 5T \)
good7 \( 1 - 12.8T + 343T^{2} \)
11 \( 1 + 49.7T + 1.33e3T^{2} \)
13 \( 1 + 52.6T + 2.19e3T^{2} \)
17 \( 1 - 84.6T + 4.91e3T^{2} \)
19 \( 1 - 26.6T + 6.85e3T^{2} \)
23 \( 1 + 136.T + 1.21e4T^{2} \)
29 \( 1 - 6T + 2.43e4T^{2} \)
31 \( 1 + 47.1T + 2.97e4T^{2} \)
37 \( 1 - 344.T + 5.06e4T^{2} \)
41 \( 1 + 43.2T + 6.89e4T^{2} \)
43 \( 1 + 252T + 7.95e4T^{2} \)
47 \( 1 + 306.T + 1.03e5T^{2} \)
53 \( 1 + 455.T + 1.48e5T^{2} \)
59 \( 1 + 708.T + 2.05e5T^{2} \)
61 \( 1 + 652.T + 2.26e5T^{2} \)
67 \( 1 + 704.T + 3.00e5T^{2} \)
71 \( 1 - 531.T + 3.57e5T^{2} \)
73 \( 1 - 57.6T + 3.89e5T^{2} \)
79 \( 1 + 429.T + 4.93e5T^{2} \)
83 \( 1 + 227.T + 5.71e5T^{2} \)
89 \( 1 - 1.03e3T + 7.04e5T^{2} \)
97 \( 1 + 152.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.12675514174149793107067178293, −9.561318040725046652998552452494, −7.965548744086654878329407677904, −7.63688005568271908468890611083, −6.21075645635587949346423413074, −5.31151211498657731081616014945, −4.65360253937502290653323675092, −2.94663186834260237840644159464, −1.66411591858483710966643571588, 0, 1.66411591858483710966643571588, 2.94663186834260237840644159464, 4.65360253937502290653323675092, 5.31151211498657731081616014945, 6.21075645635587949346423413074, 7.63688005568271908468890611083, 7.965548744086654878329407677904, 9.561318040725046652998552452494, 10.12675514174149793107067178293

Graph of the $Z$-function along the critical line