Properties

Label 2-480-1.1-c3-0-15
Degree $2$
Conductor $480$
Sign $-1$
Analytic cond. $28.3209$
Root an. cond. $5.32174$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5·5-s + 6.80·7-s + 9·9-s − 39.2·11-s + 78.4·13-s + 15·15-s − 95.2·17-s + 133.·19-s − 20.4·21-s − 66.8·23-s + 25·25-s − 27·27-s + 99.6·29-s − 322.·31-s + 117.·33-s − 34.0·35-s + 108.·37-s − 235.·39-s + 278.·41-s − 381.·43-s − 45·45-s − 211.·47-s − 296.·49-s + 285.·51-s − 411.·53-s + 196.·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 0.367·7-s + 0.333·9-s − 1.07·11-s + 1.67·13-s + 0.258·15-s − 1.35·17-s + 1.60·19-s − 0.212·21-s − 0.605·23-s + 0.200·25-s − 0.192·27-s + 0.638·29-s − 1.86·31-s + 0.620·33-s − 0.164·35-s + 0.483·37-s − 0.965·39-s + 1.05·41-s − 1.35·43-s − 0.149·45-s − 0.656·47-s − 0.864·49-s + 0.784·51-s − 1.06·53-s + 0.480·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(480\)    =    \(2^{5} \cdot 3 \cdot 5\)
Sign: $-1$
Analytic conductor: \(28.3209\)
Root analytic conductor: \(5.32174\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 480,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 + 5T \)
good7 \( 1 - 6.80T + 343T^{2} \)
11 \( 1 + 39.2T + 1.33e3T^{2} \)
13 \( 1 - 78.4T + 2.19e3T^{2} \)
17 \( 1 + 95.2T + 4.91e3T^{2} \)
19 \( 1 - 133.T + 6.85e3T^{2} \)
23 \( 1 + 66.8T + 1.21e4T^{2} \)
29 \( 1 - 99.6T + 2.43e4T^{2} \)
31 \( 1 + 322.T + 2.97e4T^{2} \)
37 \( 1 - 108.T + 5.06e4T^{2} \)
41 \( 1 - 278.T + 6.89e4T^{2} \)
43 \( 1 + 381.T + 7.95e4T^{2} \)
47 \( 1 + 211.T + 1.03e5T^{2} \)
53 \( 1 + 411.T + 1.48e5T^{2} \)
59 \( 1 + 447.T + 2.05e5T^{2} \)
61 \( 1 - 158.T + 2.26e5T^{2} \)
67 \( 1 + 455.T + 3.00e5T^{2} \)
71 \( 1 + 630.T + 3.57e5T^{2} \)
73 \( 1 - 58.8T + 3.89e5T^{2} \)
79 \( 1 + 1.25e3T + 4.93e5T^{2} \)
83 \( 1 - 229.T + 5.71e5T^{2} \)
89 \( 1 + 1.17e3T + 7.04e5T^{2} \)
97 \( 1 - 1.69e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.37607398435961941555825642989, −9.202320977326638206761002164845, −8.232601568852549157687448305181, −7.44206678813944824754395868209, −6.31648345799553570648203287275, −5.38930254185735005843191424292, −4.38718440621161168133058639668, −3.19447690847969023132534999423, −1.51906223815079821197587200245, 0, 1.51906223815079821197587200245, 3.19447690847969023132534999423, 4.38718440621161168133058639668, 5.38930254185735005843191424292, 6.31648345799553570648203287275, 7.44206678813944824754395868209, 8.232601568852549157687448305181, 9.202320977326638206761002164845, 10.37607398435961941555825642989

Graph of the $Z$-function along the critical line