Properties

Label 2-480-1.1-c3-0-0
Degree $2$
Conductor $480$
Sign $1$
Analytic cond. $28.3209$
Root an. cond. $5.32174$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s − 5·5-s − 30.3·7-s + 9·9-s − 20·11-s + 16.3·13-s + 15·15-s − 69.0·17-s − 86.3·19-s + 91.0·21-s + 34.3·23-s + 25·25-s − 27·27-s − 39.4·29-s + 217.·31-s + 60·33-s + 151.·35-s + 281.·37-s − 49.0·39-s + 342.·41-s − 373.·43-s − 45·45-s − 198.·47-s + 578.·49-s + 207.·51-s + 91.8·53-s + 100·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s − 1.63·7-s + 0.333·9-s − 0.548·11-s + 0.348·13-s + 0.258·15-s − 0.985·17-s − 1.04·19-s + 0.946·21-s + 0.311·23-s + 0.200·25-s − 0.192·27-s − 0.252·29-s + 1.25·31-s + 0.316·33-s + 0.732·35-s + 1.25·37-s − 0.201·39-s + 1.30·41-s − 1.32·43-s − 0.149·45-s − 0.616·47-s + 1.68·49-s + 0.568·51-s + 0.238·53-s + 0.245·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 480 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(480\)    =    \(2^{5} \cdot 3 \cdot 5\)
Sign: $1$
Analytic conductor: \(28.3209\)
Root analytic conductor: \(5.32174\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 480,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6825453416\)
\(L(\frac12)\) \(\approx\) \(0.6825453416\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3T \)
5 \( 1 + 5T \)
good7 \( 1 + 30.3T + 343T^{2} \)
11 \( 1 + 20T + 1.33e3T^{2} \)
13 \( 1 - 16.3T + 2.19e3T^{2} \)
17 \( 1 + 69.0T + 4.91e3T^{2} \)
19 \( 1 + 86.3T + 6.85e3T^{2} \)
23 \( 1 - 34.3T + 1.21e4T^{2} \)
29 \( 1 + 39.4T + 2.43e4T^{2} \)
31 \( 1 - 217.T + 2.97e4T^{2} \)
37 \( 1 - 281.T + 5.06e4T^{2} \)
41 \( 1 - 342.T + 6.89e4T^{2} \)
43 \( 1 + 373.T + 7.95e4T^{2} \)
47 \( 1 + 198.T + 1.03e5T^{2} \)
53 \( 1 - 91.8T + 1.48e5T^{2} \)
59 \( 1 - 49.1T + 2.05e5T^{2} \)
61 \( 1 + 309.T + 2.26e5T^{2} \)
67 \( 1 + 651.T + 3.00e5T^{2} \)
71 \( 1 - 850.T + 3.57e5T^{2} \)
73 \( 1 - 964.T + 3.89e5T^{2} \)
79 \( 1 - 724.T + 4.93e5T^{2} \)
83 \( 1 - 433.T + 5.71e5T^{2} \)
89 \( 1 - 1.26e3T + 7.04e5T^{2} \)
97 \( 1 + 1.74e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.62117367932198304633167991235, −9.783540389538097253993076641118, −8.886413961600798197510415126819, −7.78542936854376283729280037132, −6.57089508151085956137660752948, −6.22863697435914677004708429154, −4.79904785431577203410673912992, −3.74360503870024231657469416728, −2.55249161658538461262675971936, −0.50573478296655405827117483282, 0.50573478296655405827117483282, 2.55249161658538461262675971936, 3.74360503870024231657469416728, 4.79904785431577203410673912992, 6.22863697435914677004708429154, 6.57089508151085956137660752948, 7.78542936854376283729280037132, 8.886413961600798197510415126819, 9.783540389538097253993076641118, 10.62117367932198304633167991235

Graph of the $Z$-function along the critical line