Properties

Label 2-48-3.2-c4-0-2
Degree $2$
Conductor $48$
Sign $1$
Analytic cond. $4.96175$
Root an. cond. $2.22750$
Motivic weight $4$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9·3-s + 94·7-s + 81·9-s + 146·13-s + 46·19-s − 846·21-s + 625·25-s − 729·27-s − 194·31-s − 2.06e3·37-s − 1.31e3·39-s + 3.21e3·43-s + 6.43e3·49-s − 414·57-s − 1.96e3·61-s + 7.61e3·63-s − 5.90e3·67-s − 8.54e3·73-s − 5.62e3·75-s − 7.68e3·79-s + 6.56e3·81-s + 1.37e4·91-s + 1.74e3·93-s − 1.88e4·97-s − 1.64e4·103-s + 2.20e4·109-s + 1.85e4·111-s + ⋯
L(s)  = 1  − 3-s + 1.91·7-s + 9-s + 0.863·13-s + 0.127·19-s − 1.91·21-s + 25-s − 27-s − 0.201·31-s − 1.50·37-s − 0.863·39-s + 1.73·43-s + 2.68·49-s − 0.127·57-s − 0.528·61-s + 1.91·63-s − 1.31·67-s − 1.60·73-s − 75-s − 1.23·79-s + 81-s + 1.65·91-s + 0.201·93-s − 1.99·97-s − 1.54·103-s + 1.85·109-s + 1.50·111-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48\)    =    \(2^{4} \cdot 3\)
Sign: $1$
Analytic conductor: \(4.96175\)
Root analytic conductor: \(2.22750\)
Motivic weight: \(4\)
Rational: yes
Arithmetic: yes
Character: $\chi_{48} (17, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 48,\ (\ :2),\ 1)\)

Particular Values

\(L(\frac{5}{2})\) \(\approx\) \(1.370120488\)
\(L(\frac12)\) \(\approx\) \(1.370120488\)
\(L(3)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + p^{2} T \)
good5 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
7 \( 1 - 94 T + p^{4} T^{2} \)
11 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
13 \( 1 - 146 T + p^{4} T^{2} \)
17 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
19 \( 1 - 46 T + p^{4} T^{2} \)
23 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
29 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
31 \( 1 + 194 T + p^{4} T^{2} \)
37 \( 1 + 2062 T + p^{4} T^{2} \)
41 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
43 \( 1 - 3214 T + p^{4} T^{2} \)
47 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
53 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
59 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
61 \( 1 + 1966 T + p^{4} T^{2} \)
67 \( 1 + 5906 T + p^{4} T^{2} \)
71 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
73 \( 1 + 8542 T + p^{4} T^{2} \)
79 \( 1 + 7682 T + p^{4} T^{2} \)
83 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
89 \( ( 1 - p^{2} T )( 1 + p^{2} T ) \)
97 \( 1 + 18814 T + p^{4} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.95456193286921913286829754470, −13.80515904839706260006091379930, −12.32283566535191648311735339398, −11.27312125616230516058318833496, −10.60112652146086808925759879873, −8.678534999975324018407522027176, −7.32146882573243791034773119084, −5.64047629853814038035586552272, −4.46643341981148913093374685211, −1.37805448289011035027343985915, 1.37805448289011035027343985915, 4.46643341981148913093374685211, 5.64047629853814038035586552272, 7.32146882573243791034773119084, 8.678534999975324018407522027176, 10.60112652146086808925759879873, 11.27312125616230516058318833496, 12.32283566535191648311735339398, 13.80515904839706260006091379930, 14.95456193286921913286829754470

Graph of the $Z$-function along the critical line