Properties

Label 2-48-16.5-c1-0-3
Degree 22
Conductor 4848
Sign 0.762+0.646i0.762 + 0.646i
Analytic cond. 0.3832810.383281
Root an. cond. 0.6190970.619097
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.874 − 1.11i)2-s + (−0.707 + 0.707i)3-s + (−0.470 − 1.94i)4-s + (−0.334 − 0.334i)5-s + (0.167 + 1.40i)6-s + 4.55i·7-s + (−2.57 − 1.17i)8-s − 1.00i·9-s + (−0.665 + 0.0793i)10-s + (−2.47 − 2.47i)11-s + (1.70 + 1.04i)12-s + (−0.0594 + 0.0594i)13-s + (5.06 + 3.98i)14-s + 0.473·15-s + (−3.55 + 1.82i)16-s + 3.61·17-s + ⋯
L(s)  = 1  + (0.618 − 0.785i)2-s + (−0.408 + 0.408i)3-s + (−0.235 − 0.971i)4-s + (−0.149 − 0.149i)5-s + (0.0683 + 0.573i)6-s + 1.72i·7-s + (−0.909 − 0.416i)8-s − 0.333i·9-s + (−0.210 + 0.0250i)10-s + (−0.745 − 0.745i)11-s + (0.492 + 0.300i)12-s + (−0.0164 + 0.0164i)13-s + (1.35 + 1.06i)14-s + 0.122·15-s + (−0.889 + 0.457i)16-s + 0.877·17-s + ⋯

Functional equation

Λ(s)=(48s/2ΓC(s)L(s)=((0.762+0.646i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.762 + 0.646i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(48s/2ΓC(s+1/2)L(s)=((0.762+0.646i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.762 + 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 4848    =    2432^{4} \cdot 3
Sign: 0.762+0.646i0.762 + 0.646i
Analytic conductor: 0.3832810.383281
Root analytic conductor: 0.6190970.619097
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ48(37,)\chi_{48} (37, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 48, ( :1/2), 0.762+0.646i)(2,\ 48,\ (\ :1/2),\ 0.762 + 0.646i)

Particular Values

L(1)L(1) \approx 0.8591260.315241i0.859126 - 0.315241i
L(12)L(\frac12) \approx 0.8591260.315241i0.859126 - 0.315241i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.874+1.11i)T 1 + (-0.874 + 1.11i)T
3 1+(0.7070.707i)T 1 + (0.707 - 0.707i)T
good5 1+(0.334+0.334i)T+5iT2 1 + (0.334 + 0.334i)T + 5iT^{2}
7 14.55iT7T2 1 - 4.55iT - 7T^{2}
11 1+(2.47+2.47i)T+11iT2 1 + (2.47 + 2.47i)T + 11iT^{2}
13 1+(0.05940.0594i)T13iT2 1 + (0.0594 - 0.0594i)T - 13iT^{2}
17 13.61T+17T2 1 - 3.61T + 17T^{2}
19 1+(2.55+2.55i)T19iT2 1 + (-2.55 + 2.55i)T - 19iT^{2}
23 1+2.82iT23T2 1 + 2.82iT - 23T^{2}
29 1+(5.165.16i)T29iT2 1 + (5.16 - 5.16i)T - 29iT^{2}
31 1+0.557T+31T2 1 + 0.557T + 31T^{2}
37 1+(4.384.38i)T+37iT2 1 + (-4.38 - 4.38i)T + 37iT^{2}
41 19.27iT41T2 1 - 9.27iT - 41T^{2}
43 1+(1.61+1.61i)T+43iT2 1 + (1.61 + 1.61i)T + 43iT^{2}
47 12.82T+47T2 1 - 2.82T + 47T^{2}
53 1+(0.493+0.493i)T+53iT2 1 + (0.493 + 0.493i)T + 53iT^{2}
59 1+(44i)T+59iT2 1 + (-4 - 4i)T + 59iT^{2}
61 1+(2.72+2.72i)T61iT2 1 + (-2.72 + 2.72i)T - 61iT^{2}
67 1+(3.77+3.77i)T67iT2 1 + (-3.77 + 3.77i)T - 67iT^{2}
71 1+9.11iT71T2 1 + 9.11iT - 71T^{2}
73 10.541iT73T2 1 - 0.541iT - 73T^{2}
79 1+10.9T+79T2 1 + 10.9T + 79T^{2}
83 1+(10.610.6i)T83iT2 1 + (10.6 - 10.6i)T - 83iT^{2}
89 1+14.6iT89T2 1 + 14.6iT - 89T^{2}
97 14.31T+97T2 1 - 4.31T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−15.45259046146594049541990349980, −14.48970710928985023142069963813, −12.97197468381363123603374713277, −12.03702935072545998173445842602, −11.16531769844445068984838941454, −9.800984711243321477277656143961, −8.596318950109452418931733201385, −5.97148374437644136007961728477, −5.04018784539916012716801928425, −2.93277313035644301932611142198, 3.88431800021340996070071180644, 5.50016234533184009125213007544, 7.25469706611507216003136633047, 7.66130997167112872618999970533, 9.954645857861525156894588031065, 11.36083120799465652053750283849, 12.73589645070448832286116986788, 13.57402103460834438797867056377, 14.57766008330093553152231520766, 15.89760953308572664773995942205

Graph of the ZZ-function along the critical line