L(s) = 1 | + (0.874 − 1.11i)2-s + (−0.707 + 0.707i)3-s + (−0.470 − 1.94i)4-s + (−0.334 − 0.334i)5-s + (0.167 + 1.40i)6-s + 4.55i·7-s + (−2.57 − 1.17i)8-s − 1.00i·9-s + (−0.665 + 0.0793i)10-s + (−2.47 − 2.47i)11-s + (1.70 + 1.04i)12-s + (−0.0594 + 0.0594i)13-s + (5.06 + 3.98i)14-s + 0.473·15-s + (−3.55 + 1.82i)16-s + 3.61·17-s + ⋯ |
L(s) = 1 | + (0.618 − 0.785i)2-s + (−0.408 + 0.408i)3-s + (−0.235 − 0.971i)4-s + (−0.149 − 0.149i)5-s + (0.0683 + 0.573i)6-s + 1.72i·7-s + (−0.909 − 0.416i)8-s − 0.333i·9-s + (−0.210 + 0.0250i)10-s + (−0.745 − 0.745i)11-s + (0.492 + 0.300i)12-s + (−0.0164 + 0.0164i)13-s + (1.35 + 1.06i)14-s + 0.122·15-s + (−0.889 + 0.457i)16-s + 0.877·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.762 + 0.646i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.762 + 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.859126 - 0.315241i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.859126 - 0.315241i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.874 + 1.11i)T \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
good | 5 | \( 1 + (0.334 + 0.334i)T + 5iT^{2} \) |
| 7 | \( 1 - 4.55iT - 7T^{2} \) |
| 11 | \( 1 + (2.47 + 2.47i)T + 11iT^{2} \) |
| 13 | \( 1 + (0.0594 - 0.0594i)T - 13iT^{2} \) |
| 17 | \( 1 - 3.61T + 17T^{2} \) |
| 19 | \( 1 + (-2.55 + 2.55i)T - 19iT^{2} \) |
| 23 | \( 1 + 2.82iT - 23T^{2} \) |
| 29 | \( 1 + (5.16 - 5.16i)T - 29iT^{2} \) |
| 31 | \( 1 + 0.557T + 31T^{2} \) |
| 37 | \( 1 + (-4.38 - 4.38i)T + 37iT^{2} \) |
| 41 | \( 1 - 9.27iT - 41T^{2} \) |
| 43 | \( 1 + (1.61 + 1.61i)T + 43iT^{2} \) |
| 47 | \( 1 - 2.82T + 47T^{2} \) |
| 53 | \( 1 + (0.493 + 0.493i)T + 53iT^{2} \) |
| 59 | \( 1 + (-4 - 4i)T + 59iT^{2} \) |
| 61 | \( 1 + (-2.72 + 2.72i)T - 61iT^{2} \) |
| 67 | \( 1 + (-3.77 + 3.77i)T - 67iT^{2} \) |
| 71 | \( 1 + 9.11iT - 71T^{2} \) |
| 73 | \( 1 - 0.541iT - 73T^{2} \) |
| 79 | \( 1 + 10.9T + 79T^{2} \) |
| 83 | \( 1 + (10.6 - 10.6i)T - 83iT^{2} \) |
| 89 | \( 1 + 14.6iT - 89T^{2} \) |
| 97 | \( 1 - 4.31T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.45259046146594049541990349980, −14.48970710928985023142069963813, −12.97197468381363123603374713277, −12.03702935072545998173445842602, −11.16531769844445068984838941454, −9.800984711243321477277656143961, −8.596318950109452418931733201385, −5.97148374437644136007961728477, −5.04018784539916012716801928425, −2.93277313035644301932611142198,
3.88431800021340996070071180644, 5.50016234533184009125213007544, 7.25469706611507216003136633047, 7.66130997167112872618999970533, 9.954645857861525156894588031065, 11.36083120799465652053750283849, 12.73589645070448832286116986788, 13.57402103460834438797867056377, 14.57766008330093553152231520766, 15.89760953308572664773995942205