Properties

Label 2-48-1.1-c7-0-3
Degree $2$
Conductor $48$
Sign $1$
Analytic cond. $14.9944$
Root an. cond. $3.87227$
Motivic weight $7$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 27·3-s + 390·5-s + 64·7-s + 729·9-s + 948·11-s − 5.09e3·13-s + 1.05e4·15-s + 2.83e4·17-s + 8.62e3·19-s + 1.72e3·21-s + 1.52e4·23-s + 7.39e4·25-s + 1.96e4·27-s + 3.65e4·29-s + 2.76e5·31-s + 2.55e4·33-s + 2.49e4·35-s + 2.68e5·37-s − 1.37e5·39-s − 6.29e5·41-s − 6.85e5·43-s + 2.84e5·45-s − 5.83e5·47-s − 8.19e5·49-s + 7.66e5·51-s − 4.28e5·53-s + 3.69e5·55-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.39·5-s + 0.0705·7-s + 1/3·9-s + 0.214·11-s − 0.643·13-s + 0.805·15-s + 1.40·17-s + 0.288·19-s + 0.0407·21-s + 0.262·23-s + 0.946·25-s + 0.192·27-s + 0.277·29-s + 1.66·31-s + 0.123·33-s + 0.0984·35-s + 0.871·37-s − 0.371·39-s − 1.42·41-s − 1.31·43-s + 0.465·45-s − 0.819·47-s − 0.995·49-s + 0.809·51-s − 0.394·53-s + 0.299·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48\)    =    \(2^{4} \cdot 3\)
Sign: $1$
Analytic conductor: \(14.9944\)
Root analytic conductor: \(3.87227\)
Motivic weight: \(7\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 48,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(2.881132424\)
\(L(\frac12)\) \(\approx\) \(2.881132424\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p^{3} T \)
good5 \( 1 - 78 p T + p^{7} T^{2} \)
7 \( 1 - 64 T + p^{7} T^{2} \)
11 \( 1 - 948 T + p^{7} T^{2} \)
13 \( 1 + 5098 T + p^{7} T^{2} \)
17 \( 1 - 28386 T + p^{7} T^{2} \)
19 \( 1 - 8620 T + p^{7} T^{2} \)
23 \( 1 - 15288 T + p^{7} T^{2} \)
29 \( 1 - 36510 T + p^{7} T^{2} \)
31 \( 1 - 276808 T + p^{7} T^{2} \)
37 \( 1 - 268526 T + p^{7} T^{2} \)
41 \( 1 + 629718 T + p^{7} T^{2} \)
43 \( 1 + 685772 T + p^{7} T^{2} \)
47 \( 1 + 583296 T + p^{7} T^{2} \)
53 \( 1 + 428058 T + p^{7} T^{2} \)
59 \( 1 + 1306380 T + p^{7} T^{2} \)
61 \( 1 - 300662 T + p^{7} T^{2} \)
67 \( 1 - 507244 T + p^{7} T^{2} \)
71 \( 1 + 5560632 T + p^{7} T^{2} \)
73 \( 1 - 1369082 T + p^{7} T^{2} \)
79 \( 1 - 6913720 T + p^{7} T^{2} \)
83 \( 1 - 4376748 T + p^{7} T^{2} \)
89 \( 1 + 8528310 T + p^{7} T^{2} \)
97 \( 1 + 8826814 T + p^{7} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.10804162102373632621263534273, −13.27545408837824610807856612147, −11.97922458425151754913687301678, −10.15385303287455063152524977644, −9.545040437818459439283994132917, −8.069229802092742932945540968581, −6.48665461640486210913682850708, −5.06071776799982641293500466457, −2.95859504334719948472007177445, −1.47102634158889608207077908076, 1.47102634158889608207077908076, 2.95859504334719948472007177445, 5.06071776799982641293500466457, 6.48665461640486210913682850708, 8.069229802092742932945540968581, 9.545040437818459439283994132917, 10.15385303287455063152524977644, 11.97922458425151754913687301678, 13.27545408837824610807856612147, 14.10804162102373632621263534273

Graph of the $Z$-function along the critical line