L(s) = 1 | + 729·3-s − 3.02e4·5-s − 2.35e5·7-s + 5.31e5·9-s + 1.11e7·11-s + 8.04e6·13-s − 2.20e7·15-s − 1.17e8·17-s + 2.14e8·19-s − 1.71e8·21-s − 8.30e8·23-s − 3.08e8·25-s + 3.87e8·27-s − 1.25e9·29-s − 6.15e9·31-s + 8.15e9·33-s + 7.10e9·35-s − 5.49e9·37-s + 5.86e9·39-s − 4.67e9·41-s − 7.11e9·43-s − 1.60e10·45-s + 2.95e10·47-s − 4.16e10·49-s − 8.56e10·51-s − 2.04e11·53-s − 3.37e11·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 0.864·5-s − 0.755·7-s + 1/3·9-s + 1.90·11-s + 0.462·13-s − 0.499·15-s − 1.18·17-s + 1.04·19-s − 0.436·21-s − 1.16·23-s − 0.252·25-s + 0.192·27-s − 0.390·29-s − 1.24·31-s + 1.09·33-s + 0.653·35-s − 0.352·37-s + 0.267·39-s − 0.153·41-s − 0.171·43-s − 0.288·45-s + 0.399·47-s − 0.429·49-s − 0.681·51-s − 1.26·53-s − 1.64·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(14-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48 ^{s/2} \, \Gamma_{\C}(s+13/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(7)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{15}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 - p^{6} T \) |
good | 5 | \( 1 + 6042 p T + p^{13} T^{2} \) |
| 7 | \( 1 + 33584 p T + p^{13} T^{2} \) |
| 11 | \( 1 - 1016628 p T + p^{13} T^{2} \) |
| 13 | \( 1 - 8049614 T + p^{13} T^{2} \) |
| 17 | \( 1 + 117494622 T + p^{13} T^{2} \) |
| 19 | \( 1 - 214061380 T + p^{13} T^{2} \) |
| 23 | \( 1 + 830555544 T + p^{13} T^{2} \) |
| 29 | \( 1 + 1252400250 T + p^{13} T^{2} \) |
| 31 | \( 1 + 6159350552 T + p^{13} T^{2} \) |
| 37 | \( 1 + 5498191402 T + p^{13} T^{2} \) |
| 41 | \( 1 + 4678687878 T + p^{13} T^{2} \) |
| 43 | \( 1 + 7115013764 T + p^{13} T^{2} \) |
| 47 | \( 1 - 29528776992 T + p^{13} T^{2} \) |
| 53 | \( 1 + 204125042466 T + p^{13} T^{2} \) |
| 59 | \( 1 - 29909821020 T + p^{13} T^{2} \) |
| 61 | \( 1 + 134392006738 T + p^{13} T^{2} \) |
| 67 | \( 1 + 348518801948 T + p^{13} T^{2} \) |
| 71 | \( 1 + 1314335409192 T + p^{13} T^{2} \) |
| 73 | \( 1 + 1178875922326 T + p^{13} T^{2} \) |
| 79 | \( 1 - 1072420659640 T + p^{13} T^{2} \) |
| 83 | \( 1 + 1124025139644 T + p^{13} T^{2} \) |
| 89 | \( 1 - 2235610909530 T + p^{13} T^{2} \) |
| 97 | \( 1 + 14215257165502 T + p^{13} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.19920204719357331514546506189, −11.28874863133100751882322525350, −9.612401555966694054865613938696, −8.766689992903158198288669392222, −7.37366932865826266223476660431, −6.26216009026594827617838618341, −4.14198427325835632091138007571, −3.41772842943156544165541984449, −1.60547776928845228034986702729, 0,
1.60547776928845228034986702729, 3.41772842943156544165541984449, 4.14198427325835632091138007571, 6.26216009026594827617838618341, 7.37366932865826266223476660431, 8.766689992903158198288669392222, 9.612401555966694054865613938696, 11.28874863133100751882322525350, 12.19920204719357331514546506189