L(s) = 1 | − 1.60i·5-s + (2.41 + 1.08i)7-s − 4.20·11-s − 3.26·13-s − 0.666i·17-s + (2.31 + 3.69i)19-s − 1.74·23-s + 2.41·25-s − 8.97i·29-s − 7.89·31-s + (1.74 − 3.88i)35-s + 8.54i·37-s + 9.71·41-s − 0.242·43-s + 11.6i·47-s + ⋯ |
L(s) = 1 | − 0.719i·5-s + (0.912 + 0.409i)7-s − 1.26·11-s − 0.906·13-s − 0.161i·17-s + (0.530 + 0.847i)19-s − 0.362·23-s + 0.482·25-s − 1.66i·29-s − 1.41·31-s + (0.294 − 0.656i)35-s + 1.40i·37-s + 1.51·41-s − 0.0370·43-s + 1.69i·47-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)(−0.137−0.990i)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)(−0.137−0.990i)Λ(1−s)
Degree: |
2 |
Conductor: |
4788
= 22⋅32⋅7⋅19
|
Sign: |
−0.137−0.990i
|
Analytic conductor: |
38.2323 |
Root analytic conductor: |
6.18323 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ4788(3457,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 4788, ( :1/2), −0.137−0.990i)
|
Particular Values
L(1) |
≈ |
1.008750907 |
L(21) |
≈ |
1.008750907 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−2.41−1.08i)T |
| 19 | 1+(−2.31−3.69i)T |
good | 5 | 1+1.60iT−5T2 |
| 11 | 1+4.20T+11T2 |
| 13 | 1+3.26T+13T2 |
| 17 | 1+0.666iT−17T2 |
| 23 | 1+1.74T+23T2 |
| 29 | 1+8.97iT−29T2 |
| 31 | 1+7.89T+31T2 |
| 37 | 1−8.54iT−37T2 |
| 41 | 1−9.71T+41T2 |
| 43 | 1+0.242T+43T2 |
| 47 | 1−11.6iT−47T2 |
| 53 | 1−3.71iT−53T2 |
| 59 | 1+13.7T+59T2 |
| 61 | 1−1.53iT−61T2 |
| 67 | 1+12.0iT−67T2 |
| 71 | 1−3.71iT−71T2 |
| 73 | 1−9.81iT−73T2 |
| 79 | 1−8.54iT−79T2 |
| 83 | 1−4.82iT−83T2 |
| 89 | 1+9.71T+89T2 |
| 97 | 1+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.213698471211672280671057461182, −7.902048941185491608986934770139, −7.34376189604844159437389968799, −6.05400134549458281036573173607, −5.48086899077289184444553471818, −4.82030125438107941548627364347, −4.26076626420212026238828710406, −2.92928093436004919070264704788, −2.20643662098708113930348153061, −1.14924543163332610712497995635,
0.27735285221846201686415877450, 1.78453907022497985214775260015, 2.61696501140074960202277761569, 3.40348961043425144356921876089, 4.47950088170877700300571902586, 5.17265609194887244328247688206, 5.70522284928985427943454732328, 7.05296785294663006649026562116, 7.24774336492750096356523543187, 7.891195071209426133466595044925