Properties

Label 2-4788-133.132-c1-0-10
Degree $2$
Conductor $4788$
Sign $-0.137 - 0.990i$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.60i·5-s + (2.41 + 1.08i)7-s − 4.20·11-s − 3.26·13-s − 0.666i·17-s + (2.31 + 3.69i)19-s − 1.74·23-s + 2.41·25-s − 8.97i·29-s − 7.89·31-s + (1.74 − 3.88i)35-s + 8.54i·37-s + 9.71·41-s − 0.242·43-s + 11.6i·47-s + ⋯
L(s)  = 1  − 0.719i·5-s + (0.912 + 0.409i)7-s − 1.26·11-s − 0.906·13-s − 0.161i·17-s + (0.530 + 0.847i)19-s − 0.362·23-s + 0.482·25-s − 1.66i·29-s − 1.41·31-s + (0.294 − 0.656i)35-s + 1.40i·37-s + 1.51·41-s − 0.0370·43-s + 1.69i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.137 - 0.990i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.137 - 0.990i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-0.137 - 0.990i$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4788} (3457, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -0.137 - 0.990i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.008750907\)
\(L(\frac12)\) \(\approx\) \(1.008750907\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-2.41 - 1.08i)T \)
19 \( 1 + (-2.31 - 3.69i)T \)
good5 \( 1 + 1.60iT - 5T^{2} \)
11 \( 1 + 4.20T + 11T^{2} \)
13 \( 1 + 3.26T + 13T^{2} \)
17 \( 1 + 0.666iT - 17T^{2} \)
23 \( 1 + 1.74T + 23T^{2} \)
29 \( 1 + 8.97iT - 29T^{2} \)
31 \( 1 + 7.89T + 31T^{2} \)
37 \( 1 - 8.54iT - 37T^{2} \)
41 \( 1 - 9.71T + 41T^{2} \)
43 \( 1 + 0.242T + 43T^{2} \)
47 \( 1 - 11.6iT - 47T^{2} \)
53 \( 1 - 3.71iT - 53T^{2} \)
59 \( 1 + 13.7T + 59T^{2} \)
61 \( 1 - 1.53iT - 61T^{2} \)
67 \( 1 + 12.0iT - 67T^{2} \)
71 \( 1 - 3.71iT - 71T^{2} \)
73 \( 1 - 9.81iT - 73T^{2} \)
79 \( 1 - 8.54iT - 79T^{2} \)
83 \( 1 - 4.82iT - 83T^{2} \)
89 \( 1 + 9.71T + 89T^{2} \)
97 \( 1 + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.213698471211672280671057461182, −7.902048941185491608986934770139, −7.34376189604844159437389968799, −6.05400134549458281036573173607, −5.48086899077289184444553471818, −4.82030125438107941548627364347, −4.26076626420212026238828710406, −2.92928093436004919070264704788, −2.20643662098708113930348153061, −1.14924543163332610712497995635, 0.27735285221846201686415877450, 1.78453907022497985214775260015, 2.61696501140074960202277761569, 3.40348961043425144356921876089, 4.47950088170877700300571902586, 5.17265609194887244328247688206, 5.70522284928985427943454732328, 7.05296785294663006649026562116, 7.24774336492750096356523543187, 7.891195071209426133466595044925

Graph of the $Z$-function along the critical line