L(s) = 1 | + 3.31i·5-s + (1.88 − 1.86i)7-s + 4.03·11-s − 4.35·13-s + 3.96i·17-s + (−4.28 − 0.793i)19-s − 5.24·23-s − 5.98·25-s − 6.11i·29-s − 5.77·31-s + (6.16 + 6.23i)35-s − 4.33i·37-s − 6.66·41-s − 6.98·43-s − 8.19i·47-s + ⋯ |
L(s) = 1 | + 1.48i·5-s + (0.710 − 0.703i)7-s + 1.21·11-s − 1.20·13-s + 0.961i·17-s + (−0.983 − 0.181i)19-s − 1.09·23-s − 1.19·25-s − 1.13i·29-s − 1.03·31-s + (1.04 + 1.05i)35-s − 0.712i·37-s − 1.04·41-s − 1.06·43-s − 1.19i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.826 + 0.562i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.826 + 0.562i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.009964602554\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.009964602554\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-1.88 + 1.86i)T \) |
| 19 | \( 1 + (4.28 + 0.793i)T \) |
good | 5 | \( 1 - 3.31iT - 5T^{2} \) |
| 11 | \( 1 - 4.03T + 11T^{2} \) |
| 13 | \( 1 + 4.35T + 13T^{2} \) |
| 17 | \( 1 - 3.96iT - 17T^{2} \) |
| 23 | \( 1 + 5.24T + 23T^{2} \) |
| 29 | \( 1 + 6.11iT - 29T^{2} \) |
| 31 | \( 1 + 5.77T + 31T^{2} \) |
| 37 | \( 1 + 4.33iT - 37T^{2} \) |
| 41 | \( 1 + 6.66T + 41T^{2} \) |
| 43 | \( 1 + 6.98T + 43T^{2} \) |
| 47 | \( 1 + 8.19iT - 47T^{2} \) |
| 53 | \( 1 + 1.52iT - 53T^{2} \) |
| 59 | \( 1 + 11.1T + 59T^{2} \) |
| 61 | \( 1 + 1.72iT - 61T^{2} \) |
| 67 | \( 1 - 3.12iT - 67T^{2} \) |
| 71 | \( 1 - 11.5iT - 71T^{2} \) |
| 73 | \( 1 + 7.60iT - 73T^{2} \) |
| 79 | \( 1 - 10.1iT - 79T^{2} \) |
| 83 | \( 1 + 2.51iT - 83T^{2} \) |
| 89 | \( 1 - 3.82T + 89T^{2} \) |
| 97 | \( 1 - 9.44T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.579147503588355217237112573070, −7.84420964657024732931187000855, −7.21058914767421447192476923322, −6.61716066003657443192061935400, −6.07158012240851586660266818983, −4.95814968537616113153886241039, −3.97957372503054585190705771757, −3.65271844411044495871755570160, −2.33635484348221369797337263827, −1.75633642539678826748989164876,
0.00247288249970185984369624553, 1.42935395758877046022502778032, 2.00333622235385667403420735051, 3.27978324258247517826771053869, 4.49127593494802835231548454676, 4.74484169100648762140912596651, 5.49930968233940864495998209963, 6.31685489659588789498328267873, 7.22477836381652413498697684967, 8.032676788145930042343540337772