Properties

Label 2-4788-1.1-c1-0-44
Degree $2$
Conductor $4788$
Sign $-1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.85·5-s − 7-s + 2.34·11-s − 0.859·13-s − 4.34·17-s − 19-s − 4.85·23-s + 3.17·25-s − 9.37·29-s − 7.37·31-s − 2.85·35-s + 2.17·37-s − 6.69·41-s + 0.353·43-s − 5.54·47-s + 49-s − 9.55·53-s + 6.69·55-s + 14.5·59-s − 12.9·61-s − 2.45·65-s − 4.34·67-s − 7.89·71-s + 2.23·73-s − 2.34·77-s + 7.36·79-s + 1.83·83-s + ⋯
L(s)  = 1  + 1.27·5-s − 0.377·7-s + 0.705·11-s − 0.238·13-s − 1.05·17-s − 0.229·19-s − 1.01·23-s + 0.635·25-s − 1.74·29-s − 1.32·31-s − 0.483·35-s + 0.357·37-s − 1.04·41-s + 0.0539·43-s − 0.808·47-s + 0.142·49-s − 1.31·53-s + 0.902·55-s + 1.89·59-s − 1.65·61-s − 0.304·65-s − 0.530·67-s − 0.937·71-s + 0.261·73-s − 0.266·77-s + 0.828·79-s + 0.201·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
19 \( 1 + T \)
good5 \( 1 - 2.85T + 5T^{2} \)
11 \( 1 - 2.34T + 11T^{2} \)
13 \( 1 + 0.859T + 13T^{2} \)
17 \( 1 + 4.34T + 17T^{2} \)
23 \( 1 + 4.85T + 23T^{2} \)
29 \( 1 + 9.37T + 29T^{2} \)
31 \( 1 + 7.37T + 31T^{2} \)
37 \( 1 - 2.17T + 37T^{2} \)
41 \( 1 + 6.69T + 41T^{2} \)
43 \( 1 - 0.353T + 43T^{2} \)
47 \( 1 + 5.54T + 47T^{2} \)
53 \( 1 + 9.55T + 53T^{2} \)
59 \( 1 - 14.5T + 59T^{2} \)
61 \( 1 + 12.9T + 61T^{2} \)
67 \( 1 + 4.34T + 67T^{2} \)
71 \( 1 + 7.89T + 71T^{2} \)
73 \( 1 - 2.23T + 73T^{2} \)
79 \( 1 - 7.36T + 79T^{2} \)
83 \( 1 - 1.83T + 83T^{2} \)
89 \( 1 - 3.31T + 89T^{2} \)
97 \( 1 - 18.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.899385019936813032926048965988, −7.05525600287532077528601368695, −6.35892855877094674435060863559, −5.87936516085587305840767800565, −5.08894741655729006122253346542, −4.14156748431979660425516907669, −3.33193055776557401191519542690, −2.12635607869483977801507754761, −1.71142352880627929744876132350, 0, 1.71142352880627929744876132350, 2.12635607869483977801507754761, 3.33193055776557401191519542690, 4.14156748431979660425516907669, 5.08894741655729006122253346542, 5.87936516085587305840767800565, 6.35892855877094674435060863559, 7.05525600287532077528601368695, 7.899385019936813032926048965988

Graph of the $Z$-function along the critical line