Properties

Label 2-4788-1.1-c1-0-43
Degree $2$
Conductor $4788$
Sign $-1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 7-s + 2·11-s − 6·13-s − 2·17-s + 19-s − 6·23-s − 25-s + 8·29-s − 8·31-s + 2·35-s − 10·37-s − 8·41-s − 8·43-s − 2·47-s + 49-s + 8·53-s + 4·55-s − 6·61-s − 12·65-s − 4·67-s + 6·73-s + 2·77-s − 14·83-s − 4·85-s + 16·89-s − 6·91-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.377·7-s + 0.603·11-s − 1.66·13-s − 0.485·17-s + 0.229·19-s − 1.25·23-s − 1/5·25-s + 1.48·29-s − 1.43·31-s + 0.338·35-s − 1.64·37-s − 1.24·41-s − 1.21·43-s − 0.291·47-s + 1/7·49-s + 1.09·53-s + 0.539·55-s − 0.768·61-s − 1.48·65-s − 0.488·67-s + 0.702·73-s + 0.227·77-s − 1.53·83-s − 0.433·85-s + 1.69·89-s − 0.628·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 + 10 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 - 8 T + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 + 14 T + p T^{2} \)
89 \( 1 - 16 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.943928178264536318543337756592, −7.05715572806805338765138973384, −6.59542281490148697971644358559, −5.61634618577600682996259224705, −5.06931442823840590739007603394, −4.28624816762728977806493992355, −3.26143005701318123664938461135, −2.17919827795219335758523745420, −1.66565006705413892970178336922, 0, 1.66565006705413892970178336922, 2.17919827795219335758523745420, 3.26143005701318123664938461135, 4.28624816762728977806493992355, 5.06931442823840590739007603394, 5.61634618577600682996259224705, 6.59542281490148697971644358559, 7.05715572806805338765138973384, 7.943928178264536318543337756592

Graph of the $Z$-function along the critical line