Properties

Label 2-4788-1.1-c1-0-40
Degree $2$
Conductor $4788$
Sign $-1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·5-s + 7-s − 2·11-s − 2.82·13-s − 4.24·17-s + 19-s + 3.65·23-s − 2.99·25-s − 0.585·29-s − 4.82·31-s + 1.41·35-s + 10.4·37-s + 1.65·41-s + 2·43-s − 7.07·47-s + 49-s − 11.8·53-s − 2.82·55-s − 13.6·59-s + 0.828·61-s − 4.00·65-s − 4.48·67-s − 15.4·71-s − 11.6·73-s − 2·77-s + 9.17·79-s − 1.41·83-s + ⋯
L(s)  = 1  + 0.632·5-s + 0.377·7-s − 0.603·11-s − 0.784·13-s − 1.02·17-s + 0.229·19-s + 0.762·23-s − 0.599·25-s − 0.108·29-s − 0.867·31-s + 0.239·35-s + 1.72·37-s + 0.258·41-s + 0.304·43-s − 1.03·47-s + 0.142·49-s − 1.63·53-s − 0.381·55-s − 1.77·59-s + 0.106·61-s − 0.496·65-s − 0.547·67-s − 1.82·71-s − 1.36·73-s − 0.227·77-s + 1.03·79-s − 0.155·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 - 1.41T + 5T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + 2.82T + 13T^{2} \)
17 \( 1 + 4.24T + 17T^{2} \)
23 \( 1 - 3.65T + 23T^{2} \)
29 \( 1 + 0.585T + 29T^{2} \)
31 \( 1 + 4.82T + 31T^{2} \)
37 \( 1 - 10.4T + 37T^{2} \)
41 \( 1 - 1.65T + 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 + 7.07T + 47T^{2} \)
53 \( 1 + 11.8T + 53T^{2} \)
59 \( 1 + 13.6T + 59T^{2} \)
61 \( 1 - 0.828T + 61T^{2} \)
67 \( 1 + 4.48T + 67T^{2} \)
71 \( 1 + 15.4T + 71T^{2} \)
73 \( 1 + 11.6T + 73T^{2} \)
79 \( 1 - 9.17T + 79T^{2} \)
83 \( 1 + 1.41T + 83T^{2} \)
89 \( 1 - 4T + 89T^{2} \)
97 \( 1 + 3.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74842576303359474357358729524, −7.38459854021968739465688102888, −6.36071377448973138260891710138, −5.78156473253580039371533791354, −4.88558181924899562483121931182, −4.42293299928465566223611421464, −3.14298853307600965889940771986, −2.37745428103109298094846144212, −1.52830066126480666744683537254, 0, 1.52830066126480666744683537254, 2.37745428103109298094846144212, 3.14298853307600965889940771986, 4.42293299928465566223611421464, 4.88558181924899562483121931182, 5.78156473253580039371533791354, 6.36071377448973138260891710138, 7.38459854021968739465688102888, 7.74842576303359474357358729524

Graph of the $Z$-function along the critical line