L(s) = 1 | + 0.874·5-s − 7-s + 2.82·11-s + 1.23·13-s − 3.70·17-s + 19-s − 2.82·23-s − 4.23·25-s − 7.19·29-s − 5.70·31-s − 0.874·35-s − 4.47·37-s + 8.48·41-s − 0.763·43-s − 5.45·47-s + 49-s + 4.37·53-s + 2.47·55-s − 14.8·59-s − 12.4·61-s + 1.08·65-s + 11.4·67-s − 3.03·71-s + 6.94·73-s − 2.82·77-s − 1.52·79-s + 4.78·83-s + ⋯ |
L(s) = 1 | + 0.390·5-s − 0.377·7-s + 0.852·11-s + 0.342·13-s − 0.897·17-s + 0.229·19-s − 0.589·23-s − 0.847·25-s − 1.33·29-s − 1.02·31-s − 0.147·35-s − 0.735·37-s + 1.32·41-s − 0.116·43-s − 0.795·47-s + 0.142·49-s + 0.600·53-s + 0.333·55-s − 1.92·59-s − 1.59·61-s + 0.134·65-s + 1.39·67-s − 0.360·71-s + 0.812·73-s − 0.322·77-s − 0.171·79-s + 0.524·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + T \) |
| 19 | \( 1 - T \) |
good | 5 | \( 1 - 0.874T + 5T^{2} \) |
| 11 | \( 1 - 2.82T + 11T^{2} \) |
| 13 | \( 1 - 1.23T + 13T^{2} \) |
| 17 | \( 1 + 3.70T + 17T^{2} \) |
| 23 | \( 1 + 2.82T + 23T^{2} \) |
| 29 | \( 1 + 7.19T + 29T^{2} \) |
| 31 | \( 1 + 5.70T + 31T^{2} \) |
| 37 | \( 1 + 4.47T + 37T^{2} \) |
| 41 | \( 1 - 8.48T + 41T^{2} \) |
| 43 | \( 1 + 0.763T + 43T^{2} \) |
| 47 | \( 1 + 5.45T + 47T^{2} \) |
| 53 | \( 1 - 4.37T + 53T^{2} \) |
| 59 | \( 1 + 14.8T + 59T^{2} \) |
| 61 | \( 1 + 12.4T + 61T^{2} \) |
| 67 | \( 1 - 11.4T + 67T^{2} \) |
| 71 | \( 1 + 3.03T + 71T^{2} \) |
| 73 | \( 1 - 6.94T + 73T^{2} \) |
| 79 | \( 1 + 1.52T + 79T^{2} \) |
| 83 | \( 1 - 4.78T + 83T^{2} \) |
| 89 | \( 1 - 8.48T + 89T^{2} \) |
| 97 | \( 1 + 3.52T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.83815003412572286988663583201, −7.20937233504424002828795915379, −6.30924969696008156841077651875, −5.94926427854162062592795687765, −5.00133336429595421938721905192, −4.01259032119415004015264693154, −3.49214986591168343188766404571, −2.27152978849208383081721199037, −1.51033746457637134319415699876, 0,
1.51033746457637134319415699876, 2.27152978849208383081721199037, 3.49214986591168343188766404571, 4.01259032119415004015264693154, 5.00133336429595421938721905192, 5.94926427854162062592795687765, 6.30924969696008156841077651875, 7.20937233504424002828795915379, 7.83815003412572286988663583201