L(s) = 1 | + 0.874·5-s − 7-s + 2.82·11-s + 1.23·13-s − 3.70·17-s + 19-s − 2.82·23-s − 4.23·25-s − 7.19·29-s − 5.70·31-s − 0.874·35-s − 4.47·37-s + 8.48·41-s − 0.763·43-s − 5.45·47-s + 49-s + 4.37·53-s + 2.47·55-s − 14.8·59-s − 12.4·61-s + 1.08·65-s + 11.4·67-s − 3.03·71-s + 6.94·73-s − 2.82·77-s − 1.52·79-s + 4.78·83-s + ⋯ |
L(s) = 1 | + 0.390·5-s − 0.377·7-s + 0.852·11-s + 0.342·13-s − 0.897·17-s + 0.229·19-s − 0.589·23-s − 0.847·25-s − 1.33·29-s − 1.02·31-s − 0.147·35-s − 0.735·37-s + 1.32·41-s − 0.116·43-s − 0.795·47-s + 0.142·49-s + 0.600·53-s + 0.333·55-s − 1.92·59-s − 1.59·61-s + 0.134·65-s + 1.39·67-s − 0.360·71-s + 0.812·73-s − 0.322·77-s − 0.171·79-s + 0.524·83-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
| 19 | 1−T |
good | 5 | 1−0.874T+5T2 |
| 11 | 1−2.82T+11T2 |
| 13 | 1−1.23T+13T2 |
| 17 | 1+3.70T+17T2 |
| 23 | 1+2.82T+23T2 |
| 29 | 1+7.19T+29T2 |
| 31 | 1+5.70T+31T2 |
| 37 | 1+4.47T+37T2 |
| 41 | 1−8.48T+41T2 |
| 43 | 1+0.763T+43T2 |
| 47 | 1+5.45T+47T2 |
| 53 | 1−4.37T+53T2 |
| 59 | 1+14.8T+59T2 |
| 61 | 1+12.4T+61T2 |
| 67 | 1−11.4T+67T2 |
| 71 | 1+3.03T+71T2 |
| 73 | 1−6.94T+73T2 |
| 79 | 1+1.52T+79T2 |
| 83 | 1−4.78T+83T2 |
| 89 | 1−8.48T+89T2 |
| 97 | 1+3.52T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.83815003412572286988663583201, −7.20937233504424002828795915379, −6.30924969696008156841077651875, −5.94926427854162062592795687765, −5.00133336429595421938721905192, −4.01259032119415004015264693154, −3.49214986591168343188766404571, −2.27152978849208383081721199037, −1.51033746457637134319415699876, 0,
1.51033746457637134319415699876, 2.27152978849208383081721199037, 3.49214986591168343188766404571, 4.01259032119415004015264693154, 5.00133336429595421938721905192, 5.94926427854162062592795687765, 6.30924969696008156841077651875, 7.20937233504424002828795915379, 7.83815003412572286988663583201