Properties

Label 2-4788-1.1-c1-0-36
Degree $2$
Conductor $4788$
Sign $-1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.540·5-s + 7-s − 1.74·11-s − 0.763·13-s − 2.28·17-s − 19-s + 7.40·23-s − 4.70·25-s + 7.94·29-s − 2.76·31-s − 0.540·35-s − 6·37-s − 1.74·41-s − 10.1·43-s + 5.78·47-s + 49-s + 6.19·53-s + 0.944·55-s − 12.6·59-s + 6.94·61-s + 0.412·65-s − 2.47·67-s − 9.69·71-s − 3.52·73-s − 1.74·77-s + 4.94·79-s − 7.27·83-s + ⋯
L(s)  = 1  − 0.241·5-s + 0.377·7-s − 0.527·11-s − 0.211·13-s − 0.554·17-s − 0.229·19-s + 1.54·23-s − 0.941·25-s + 1.47·29-s − 0.496·31-s − 0.0913·35-s − 0.986·37-s − 0.273·41-s − 1.55·43-s + 0.843·47-s + 0.142·49-s + 0.851·53-s + 0.127·55-s − 1.64·59-s + 0.889·61-s + 0.0511·65-s − 0.302·67-s − 1.15·71-s − 0.412·73-s − 0.199·77-s + 0.556·79-s − 0.798·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 + 0.540T + 5T^{2} \)
11 \( 1 + 1.74T + 11T^{2} \)
13 \( 1 + 0.763T + 13T^{2} \)
17 \( 1 + 2.28T + 17T^{2} \)
23 \( 1 - 7.40T + 23T^{2} \)
29 \( 1 - 7.94T + 29T^{2} \)
31 \( 1 + 2.76T + 31T^{2} \)
37 \( 1 + 6T + 37T^{2} \)
41 \( 1 + 1.74T + 41T^{2} \)
43 \( 1 + 10.1T + 43T^{2} \)
47 \( 1 - 5.78T + 47T^{2} \)
53 \( 1 - 6.19T + 53T^{2} \)
59 \( 1 + 12.6T + 59T^{2} \)
61 \( 1 - 6.94T + 61T^{2} \)
67 \( 1 + 2.47T + 67T^{2} \)
71 \( 1 + 9.69T + 71T^{2} \)
73 \( 1 + 3.52T + 73T^{2} \)
79 \( 1 - 4.94T + 79T^{2} \)
83 \( 1 + 7.27T + 83T^{2} \)
89 \( 1 + 1.74T + 89T^{2} \)
97 \( 1 + 17.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.969874478363209640002637755486, −7.16479816731267572774731576215, −6.64061438651094720425715908413, −5.60952661808464080705745450248, −4.95308963225724869800064640146, −4.27362038097360279454761887814, −3.26885426278856319354476109589, −2.45384891904683586832325859875, −1.38710818612479689931326629165, 0, 1.38710818612479689931326629165, 2.45384891904683586832325859875, 3.26885426278856319354476109589, 4.27362038097360279454761887814, 4.95308963225724869800064640146, 5.60952661808464080705745450248, 6.64061438651094720425715908413, 7.16479816731267572774731576215, 7.969874478363209640002637755486

Graph of the $Z$-function along the critical line