L(s) = 1 | − 1.41·5-s + 7-s − 2·11-s + 2.82·13-s + 4.24·17-s + 19-s − 7.65·23-s − 2.99·25-s − 3.41·29-s + 0.828·31-s − 1.41·35-s − 6.48·37-s − 9.65·41-s + 2·43-s + 7.07·47-s + 49-s + 7.89·53-s + 2.82·55-s − 2.34·59-s − 4.82·61-s − 4.00·65-s + 12.4·67-s − 12.5·71-s − 0.343·73-s − 2·77-s + 14.8·79-s + 1.41·83-s + ⋯ |
L(s) = 1 | − 0.632·5-s + 0.377·7-s − 0.603·11-s + 0.784·13-s + 1.02·17-s + 0.229·19-s − 1.59·23-s − 0.599·25-s − 0.634·29-s + 0.148·31-s − 0.239·35-s − 1.06·37-s − 1.50·41-s + 0.304·43-s + 1.03·47-s + 0.142·49-s + 1.08·53-s + 0.381·55-s − 0.305·59-s − 0.618·61-s − 0.496·65-s + 1.52·67-s − 1.49·71-s − 0.0401·73-s − 0.227·77-s + 1.66·79-s + 0.155·83-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
| 19 | \( 1 - T \) |
good | 5 | \( 1 + 1.41T + 5T^{2} \) |
| 11 | \( 1 + 2T + 11T^{2} \) |
| 13 | \( 1 - 2.82T + 13T^{2} \) |
| 17 | \( 1 - 4.24T + 17T^{2} \) |
| 23 | \( 1 + 7.65T + 23T^{2} \) |
| 29 | \( 1 + 3.41T + 29T^{2} \) |
| 31 | \( 1 - 0.828T + 31T^{2} \) |
| 37 | \( 1 + 6.48T + 37T^{2} \) |
| 41 | \( 1 + 9.65T + 41T^{2} \) |
| 43 | \( 1 - 2T + 43T^{2} \) |
| 47 | \( 1 - 7.07T + 47T^{2} \) |
| 53 | \( 1 - 7.89T + 53T^{2} \) |
| 59 | \( 1 + 2.34T + 59T^{2} \) |
| 61 | \( 1 + 4.82T + 61T^{2} \) |
| 67 | \( 1 - 12.4T + 67T^{2} \) |
| 71 | \( 1 + 12.5T + 71T^{2} \) |
| 73 | \( 1 + 0.343T + 73T^{2} \) |
| 79 | \( 1 - 14.8T + 79T^{2} \) |
| 83 | \( 1 - 1.41T + 83T^{2} \) |
| 89 | \( 1 - 4T + 89T^{2} \) |
| 97 | \( 1 - 7.65T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.87310362529097307416656725060, −7.47006750839650680017319183741, −6.44395940653967777455071421527, −5.64823959388904166318957747919, −5.07566147083065032175335697896, −3.92077519481118726494592225486, −3.59405683020532406293635415270, −2.38030094933027795975753773356, −1.36423693170917507869562531981, 0,
1.36423693170917507869562531981, 2.38030094933027795975753773356, 3.59405683020532406293635415270, 3.92077519481118726494592225486, 5.07566147083065032175335697896, 5.64823959388904166318957747919, 6.44395940653967777455071421527, 7.47006750839650680017319183741, 7.87310362529097307416656725060