Properties

Label 2-4788-1.1-c1-0-35
Degree $2$
Conductor $4788$
Sign $-1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·5-s + 7-s − 2·11-s + 2.82·13-s + 4.24·17-s + 19-s − 7.65·23-s − 2.99·25-s − 3.41·29-s + 0.828·31-s − 1.41·35-s − 6.48·37-s − 9.65·41-s + 2·43-s + 7.07·47-s + 49-s + 7.89·53-s + 2.82·55-s − 2.34·59-s − 4.82·61-s − 4.00·65-s + 12.4·67-s − 12.5·71-s − 0.343·73-s − 2·77-s + 14.8·79-s + 1.41·83-s + ⋯
L(s)  = 1  − 0.632·5-s + 0.377·7-s − 0.603·11-s + 0.784·13-s + 1.02·17-s + 0.229·19-s − 1.59·23-s − 0.599·25-s − 0.634·29-s + 0.148·31-s − 0.239·35-s − 1.06·37-s − 1.50·41-s + 0.304·43-s + 1.03·47-s + 0.142·49-s + 1.08·53-s + 0.381·55-s − 0.305·59-s − 0.618·61-s − 0.496·65-s + 1.52·67-s − 1.49·71-s − 0.0401·73-s − 0.227·77-s + 1.66·79-s + 0.155·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 + 1.41T + 5T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 - 2.82T + 13T^{2} \)
17 \( 1 - 4.24T + 17T^{2} \)
23 \( 1 + 7.65T + 23T^{2} \)
29 \( 1 + 3.41T + 29T^{2} \)
31 \( 1 - 0.828T + 31T^{2} \)
37 \( 1 + 6.48T + 37T^{2} \)
41 \( 1 + 9.65T + 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 - 7.07T + 47T^{2} \)
53 \( 1 - 7.89T + 53T^{2} \)
59 \( 1 + 2.34T + 59T^{2} \)
61 \( 1 + 4.82T + 61T^{2} \)
67 \( 1 - 12.4T + 67T^{2} \)
71 \( 1 + 12.5T + 71T^{2} \)
73 \( 1 + 0.343T + 73T^{2} \)
79 \( 1 - 14.8T + 79T^{2} \)
83 \( 1 - 1.41T + 83T^{2} \)
89 \( 1 - 4T + 89T^{2} \)
97 \( 1 - 7.65T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87310362529097307416656725060, −7.47006750839650680017319183741, −6.44395940653967777455071421527, −5.64823959388904166318957747919, −5.07566147083065032175335697896, −3.92077519481118726494592225486, −3.59405683020532406293635415270, −2.38030094933027795975753773356, −1.36423693170917507869562531981, 0, 1.36423693170917507869562531981, 2.38030094933027795975753773356, 3.59405683020532406293635415270, 3.92077519481118726494592225486, 5.07566147083065032175335697896, 5.64823959388904166318957747919, 6.44395940653967777455071421527, 7.47006750839650680017319183741, 7.87310362529097307416656725060

Graph of the $Z$-function along the critical line