Properties

Label 2-4788-1.1-c1-0-3
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.91·5-s + 7-s − 2·11-s − 4.35·13-s − 2.91·17-s − 19-s − 2·23-s + 3.51·25-s − 7.79·29-s + 6.35·31-s − 2.91·35-s − 3.83·37-s + 4·41-s + 3.48·43-s + 11.6·47-s + 49-s + 0.918·53-s + 5.83·55-s + 0.162·61-s + 12.7·65-s − 5.83·67-s − 0.918·71-s − 6.70·73-s − 2·77-s + 10.8·79-s − 5.79·83-s + 8.51·85-s + ⋯
L(s)  = 1  − 1.30·5-s + 0.377·7-s − 0.603·11-s − 1.20·13-s − 0.707·17-s − 0.229·19-s − 0.417·23-s + 0.703·25-s − 1.44·29-s + 1.14·31-s − 0.493·35-s − 0.630·37-s + 0.624·41-s + 0.531·43-s + 1.69·47-s + 0.142·49-s + 0.126·53-s + 0.787·55-s + 0.0208·61-s + 1.57·65-s − 0.713·67-s − 0.109·71-s − 0.785·73-s − 0.227·77-s + 1.22·79-s − 0.635·83-s + 0.923·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8015815022\)
\(L(\frac12)\) \(\approx\) \(0.8015815022\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 + 2.91T + 5T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
13 \( 1 + 4.35T + 13T^{2} \)
17 \( 1 + 2.91T + 17T^{2} \)
23 \( 1 + 2T + 23T^{2} \)
29 \( 1 + 7.79T + 29T^{2} \)
31 \( 1 - 6.35T + 31T^{2} \)
37 \( 1 + 3.83T + 37T^{2} \)
41 \( 1 - 4T + 41T^{2} \)
43 \( 1 - 3.48T + 43T^{2} \)
47 \( 1 - 11.6T + 47T^{2} \)
53 \( 1 - 0.918T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 0.162T + 61T^{2} \)
67 \( 1 + 5.83T + 67T^{2} \)
71 \( 1 + 0.918T + 71T^{2} \)
73 \( 1 + 6.70T + 73T^{2} \)
79 \( 1 - 10.8T + 79T^{2} \)
83 \( 1 + 5.79T + 83T^{2} \)
89 \( 1 - 4T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.166228553381520396166298826976, −7.47388037568272191904455908028, −7.22457053962280901337642322414, −6.09202771701938751495185714544, −5.21459860890261353705632363201, −4.45539645557523814972599415501, −3.94205510183702123129668077054, −2.85538130259959517483978223082, −2.04936227104208245380896654922, −0.46953722464500792643323454824, 0.46953722464500792643323454824, 2.04936227104208245380896654922, 2.85538130259959517483978223082, 3.94205510183702123129668077054, 4.45539645557523814972599415501, 5.21459860890261353705632363201, 6.09202771701938751495185714544, 7.22457053962280901337642322414, 7.47388037568272191904455908028, 8.166228553381520396166298826976

Graph of the $Z$-function along the critical line