Properties

Label 2-4788-1.1-c1-0-29
Degree $2$
Conductor $4788$
Sign $-1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s + 7-s − 0.791·11-s − 13-s + 0.791·17-s + 19-s + 4.58·23-s + 4·25-s + 0.791·29-s − 6.37·31-s − 3·35-s + 5·37-s − 0.791·41-s + 2·43-s − 1.41·47-s + 49-s − 5.37·53-s + 2.37·55-s + 6.16·59-s − 61-s + 3·65-s + 4.37·67-s − 6.16·71-s + 2.62·73-s − 0.791·77-s − 10·79-s − 0.626·83-s + ⋯
L(s)  = 1  − 1.34·5-s + 0.377·7-s − 0.238·11-s − 0.277·13-s + 0.191·17-s + 0.229·19-s + 0.955·23-s + 0.800·25-s + 0.146·29-s − 1.14·31-s − 0.507·35-s + 0.821·37-s − 0.123·41-s + 0.304·43-s − 0.206·47-s + 0.142·49-s − 0.738·53-s + 0.320·55-s + 0.802·59-s − 0.128·61-s + 0.372·65-s + 0.534·67-s − 0.731·71-s + 0.307·73-s − 0.0901·77-s − 1.12·79-s − 0.0687·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $-1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 + 3T + 5T^{2} \)
11 \( 1 + 0.791T + 11T^{2} \)
13 \( 1 + T + 13T^{2} \)
17 \( 1 - 0.791T + 17T^{2} \)
23 \( 1 - 4.58T + 23T^{2} \)
29 \( 1 - 0.791T + 29T^{2} \)
31 \( 1 + 6.37T + 31T^{2} \)
37 \( 1 - 5T + 37T^{2} \)
41 \( 1 + 0.791T + 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 + 1.41T + 47T^{2} \)
53 \( 1 + 5.37T + 53T^{2} \)
59 \( 1 - 6.16T + 59T^{2} \)
61 \( 1 + T + 61T^{2} \)
67 \( 1 - 4.37T + 67T^{2} \)
71 \( 1 + 6.16T + 71T^{2} \)
73 \( 1 - 2.62T + 73T^{2} \)
79 \( 1 + 10T + 79T^{2} \)
83 \( 1 + 0.626T + 83T^{2} \)
89 \( 1 - 1.58T + 89T^{2} \)
97 \( 1 + 7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80283762498430611359299703056, −7.40759584338356605845797064655, −6.66512922165972716841209446383, −5.59300398234536532776870612585, −4.89136019623863065399816131807, −4.14791713355486299485805038780, −3.41875162218618716461444116800, −2.54451736757246010219507418840, −1.22594558923348279748418013920, 0, 1.22594558923348279748418013920, 2.54451736757246010219507418840, 3.41875162218618716461444116800, 4.14791713355486299485805038780, 4.89136019623863065399816131807, 5.59300398234536532776870612585, 6.66512922165972716841209446383, 7.40759584338356605845797064655, 7.80283762498430611359299703056

Graph of the $Z$-function along the critical line