Properties

Label 2-4788-1.1-c1-0-23
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.23·5-s + 7-s + 2·11-s + 4.47·13-s − 3.23·17-s − 19-s + 2·23-s + 5.47·25-s + 2.76·29-s + 4·31-s + 3.23·35-s − 4.47·37-s + 2.47·41-s − 1.52·43-s + 4.76·47-s + 49-s + 10.1·53-s + 6.47·55-s − 4.94·59-s − 8.47·61-s + 14.4·65-s − 12.9·67-s + 2.76·71-s + 6·73-s + 2·77-s + 0.944·79-s + 11.2·83-s + ⋯
L(s)  = 1  + 1.44·5-s + 0.377·7-s + 0.603·11-s + 1.24·13-s − 0.784·17-s − 0.229·19-s + 0.417·23-s + 1.09·25-s + 0.513·29-s + 0.718·31-s + 0.546·35-s − 0.735·37-s + 0.386·41-s − 0.232·43-s + 0.694·47-s + 0.142·49-s + 1.39·53-s + 0.872·55-s − 0.643·59-s − 1.08·61-s + 1.79·65-s − 1.58·67-s + 0.328·71-s + 0.702·73-s + 0.227·77-s + 0.106·79-s + 1.23·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.148664097\)
\(L(\frac12)\) \(\approx\) \(3.148664097\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 + T \)
good5 \( 1 - 3.23T + 5T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 - 4.47T + 13T^{2} \)
17 \( 1 + 3.23T + 17T^{2} \)
23 \( 1 - 2T + 23T^{2} \)
29 \( 1 - 2.76T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 + 4.47T + 37T^{2} \)
41 \( 1 - 2.47T + 41T^{2} \)
43 \( 1 + 1.52T + 43T^{2} \)
47 \( 1 - 4.76T + 47T^{2} \)
53 \( 1 - 10.1T + 53T^{2} \)
59 \( 1 + 4.94T + 59T^{2} \)
61 \( 1 + 8.47T + 61T^{2} \)
67 \( 1 + 12.9T + 67T^{2} \)
71 \( 1 - 2.76T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 0.944T + 79T^{2} \)
83 \( 1 - 11.2T + 83T^{2} \)
89 \( 1 - 10.4T + 89T^{2} \)
97 \( 1 - 7.52T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.561266748619750062654643145899, −7.52568362109191971729194594285, −6.49965704325248316658661055143, −6.27630192873524620341954861513, −5.44321374509681900649684391464, −4.65161518070291075287410499799, −3.78878996874181176894084618008, −2.71119375745888847995330347808, −1.84769743631374320526850239478, −1.07111329255288240712707202781, 1.07111329255288240712707202781, 1.84769743631374320526850239478, 2.71119375745888847995330347808, 3.78878996874181176894084618008, 4.65161518070291075287410499799, 5.44321374509681900649684391464, 6.27630192873524620341954861513, 6.49965704325248316658661055143, 7.52568362109191971729194594285, 8.561266748619750062654643145899

Graph of the $Z$-function along the critical line