L(s) = 1 | + 3.23·5-s + 7-s + 2·11-s + 4.47·13-s − 3.23·17-s − 19-s + 2·23-s + 5.47·25-s + 2.76·29-s + 4·31-s + 3.23·35-s − 4.47·37-s + 2.47·41-s − 1.52·43-s + 4.76·47-s + 49-s + 10.1·53-s + 6.47·55-s − 4.94·59-s − 8.47·61-s + 14.4·65-s − 12.9·67-s + 2.76·71-s + 6·73-s + 2·77-s + 0.944·79-s + 11.2·83-s + ⋯ |
L(s) = 1 | + 1.44·5-s + 0.377·7-s + 0.603·11-s + 1.24·13-s − 0.784·17-s − 0.229·19-s + 0.417·23-s + 1.09·25-s + 0.513·29-s + 0.718·31-s + 0.546·35-s − 0.735·37-s + 0.386·41-s − 0.232·43-s + 0.694·47-s + 0.142·49-s + 1.39·53-s + 0.872·55-s − 0.643·59-s − 1.08·61-s + 1.79·65-s − 1.58·67-s + 0.328·71-s + 0.702·73-s + 0.227·77-s + 0.106·79-s + 1.23·83-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.148664097 |
L(21) |
≈ |
3.148664097 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1−T |
| 19 | 1+T |
good | 5 | 1−3.23T+5T2 |
| 11 | 1−2T+11T2 |
| 13 | 1−4.47T+13T2 |
| 17 | 1+3.23T+17T2 |
| 23 | 1−2T+23T2 |
| 29 | 1−2.76T+29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1+4.47T+37T2 |
| 41 | 1−2.47T+41T2 |
| 43 | 1+1.52T+43T2 |
| 47 | 1−4.76T+47T2 |
| 53 | 1−10.1T+53T2 |
| 59 | 1+4.94T+59T2 |
| 61 | 1+8.47T+61T2 |
| 67 | 1+12.9T+67T2 |
| 71 | 1−2.76T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1−0.944T+79T2 |
| 83 | 1−11.2T+83T2 |
| 89 | 1−10.4T+89T2 |
| 97 | 1−7.52T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.561266748619750062654643145899, −7.52568362109191971729194594285, −6.49965704325248316658661055143, −6.27630192873524620341954861513, −5.44321374509681900649684391464, −4.65161518070291075287410499799, −3.78878996874181176894084618008, −2.71119375745888847995330347808, −1.84769743631374320526850239478, −1.07111329255288240712707202781,
1.07111329255288240712707202781, 1.84769743631374320526850239478, 2.71119375745888847995330347808, 3.78878996874181176894084618008, 4.65161518070291075287410499799, 5.44321374509681900649684391464, 6.27630192873524620341954861513, 6.49965704325248316658661055143, 7.52568362109191971729194594285, 8.561266748619750062654643145899