Properties

Label 2-4788-1.1-c1-0-22
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.71·5-s + 7-s − 2.36·11-s + 6.60·13-s + 5.08·17-s + 19-s − 2.36·23-s + 2.39·25-s + 5.08·29-s + 0.605·31-s + 2.71·35-s + 2·37-s − 2.36·41-s + 0.605·43-s − 5.08·47-s + 49-s + 2.71·53-s − 6.42·55-s − 4.72·59-s + 2·61-s + 17.9·65-s + 5.21·67-s + 2.00·71-s − 7.21·73-s − 2.36·77-s − 4·79-s − 2.71·83-s + ⋯
L(s)  = 1  + 1.21·5-s + 0.377·7-s − 0.712·11-s + 1.83·13-s + 1.23·17-s + 0.229·19-s − 0.492·23-s + 0.478·25-s + 0.943·29-s + 0.108·31-s + 0.459·35-s + 0.328·37-s − 0.368·41-s + 0.0923·43-s − 0.741·47-s + 0.142·49-s + 0.373·53-s − 0.865·55-s − 0.614·59-s + 0.256·61-s + 2.22·65-s + 0.636·67-s + 0.237·71-s − 0.843·73-s − 0.269·77-s − 0.450·79-s − 0.298·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.996651395\)
\(L(\frac12)\) \(\approx\) \(2.996651395\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
19 \( 1 - T \)
good5 \( 1 - 2.71T + 5T^{2} \)
11 \( 1 + 2.36T + 11T^{2} \)
13 \( 1 - 6.60T + 13T^{2} \)
17 \( 1 - 5.08T + 17T^{2} \)
23 \( 1 + 2.36T + 23T^{2} \)
29 \( 1 - 5.08T + 29T^{2} \)
31 \( 1 - 0.605T + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 + 2.36T + 41T^{2} \)
43 \( 1 - 0.605T + 43T^{2} \)
47 \( 1 + 5.08T + 47T^{2} \)
53 \( 1 - 2.71T + 53T^{2} \)
59 \( 1 + 4.72T + 59T^{2} \)
61 \( 1 - 2T + 61T^{2} \)
67 \( 1 - 5.21T + 67T^{2} \)
71 \( 1 - 2.00T + 71T^{2} \)
73 \( 1 + 7.21T + 73T^{2} \)
79 \( 1 + 4T + 79T^{2} \)
83 \( 1 + 2.71T + 83T^{2} \)
89 \( 1 + 13.2T + 89T^{2} \)
97 \( 1 - 11.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.311421359196713963324800176388, −7.70633015540231132837695026615, −6.67253787998972207143376623757, −5.93225803142731873281283065880, −5.58658281342538487232289978129, −4.70601562540524376183911390628, −3.65569099067561669228976803189, −2.84610023933289797529535384858, −1.80307785238929124843503935475, −1.04476527953597846278367002093, 1.04476527953597846278367002093, 1.80307785238929124843503935475, 2.84610023933289797529535384858, 3.65569099067561669228976803189, 4.70601562540524376183911390628, 5.58658281342538487232289978129, 5.93225803142731873281283065880, 6.67253787998972207143376623757, 7.70633015540231132837695026615, 8.311421359196713963324800176388

Graph of the $Z$-function along the critical line