Properties

Label 2-4788-1.1-c1-0-18
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s + 2·11-s + 6·13-s + 8·17-s + 19-s + 2·23-s − 5·25-s − 6·29-s + 10·37-s + 8·41-s − 12·43-s − 4·47-s + 49-s − 2·53-s + 8·59-s − 10·61-s − 12·67-s + 10·71-s − 2·73-s − 2·77-s − 8·79-s + 4·83-s + 8·89-s − 6·91-s + 2·97-s + 4·101-s − 2·107-s + ⋯
L(s)  = 1  − 0.377·7-s + 0.603·11-s + 1.66·13-s + 1.94·17-s + 0.229·19-s + 0.417·23-s − 25-s − 1.11·29-s + 1.64·37-s + 1.24·41-s − 1.82·43-s − 0.583·47-s + 1/7·49-s − 0.274·53-s + 1.04·59-s − 1.28·61-s − 1.46·67-s + 1.18·71-s − 0.234·73-s − 0.227·77-s − 0.900·79-s + 0.439·83-s + 0.847·89-s − 0.628·91-s + 0.203·97-s + 0.398·101-s − 0.193·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.276681053\)
\(L(\frac12)\) \(\approx\) \(2.276681053\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
19 \( 1 - T \)
good5 \( 1 + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 8 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 10 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 + 12 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 10 T + p T^{2} \)
67 \( 1 + 12 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 8 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.141126835189670259468431790625, −7.71179363869623773766951421262, −6.78425966044936463996649660556, −5.92461069948544809607605082020, −5.68657546334957466916060281266, −4.45128064822373452531412119614, −3.58432542369787507380741066676, −3.17785935881446270719128297999, −1.73108969966905643937793181595, −0.895071874805042573229366117238, 0.895071874805042573229366117238, 1.73108969966905643937793181595, 3.17785935881446270719128297999, 3.58432542369787507380741066676, 4.45128064822373452531412119614, 5.68657546334957466916060281266, 5.92461069948544809607605082020, 6.78425966044936463996649660556, 7.71179363869623773766951421262, 8.141126835189670259468431790625

Graph of the $Z$-function along the critical line