L(s) = 1 | − 2.54·5-s − 7-s + 5.35·11-s + 6.80·13-s + 4.03·17-s − 19-s − 7.79·23-s + 1.45·25-s + 2.81·29-s − 1.54·31-s + 2.54·35-s + 5.09·37-s − 9.22·41-s + 1.54·43-s − 5.46·47-s + 49-s + 9.39·53-s − 13.6·55-s + 5.09·61-s − 17.2·65-s − 3.25·67-s + 1.32·71-s + 16.5·73-s − 5.35·77-s + 11.2·79-s − 6.19·83-s − 10.2·85-s + ⋯ |
L(s) = 1 | − 1.13·5-s − 0.377·7-s + 1.61·11-s + 1.88·13-s + 0.978·17-s − 0.229·19-s − 1.62·23-s + 0.290·25-s + 0.523·29-s − 0.277·31-s + 0.429·35-s + 0.837·37-s − 1.44·41-s + 0.235·43-s − 0.797·47-s + 0.142·49-s + 1.28·53-s − 1.83·55-s + 0.651·61-s − 2.14·65-s − 0.398·67-s + 0.157·71-s + 1.93·73-s − 0.610·77-s + 1.26·79-s − 0.679·83-s − 1.11·85-s + ⋯ |
Λ(s)=(=(4788s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4788s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.731095414 |
L(21) |
≈ |
1.731095414 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
| 19 | 1+T |
good | 5 | 1+2.54T+5T2 |
| 11 | 1−5.35T+11T2 |
| 13 | 1−6.80T+13T2 |
| 17 | 1−4.03T+17T2 |
| 23 | 1+7.79T+23T2 |
| 29 | 1−2.81T+29T2 |
| 31 | 1+1.54T+31T2 |
| 37 | 1−5.09T+37T2 |
| 41 | 1+9.22T+41T2 |
| 43 | 1−1.54T+43T2 |
| 47 | 1+5.46T+47T2 |
| 53 | 1−9.39T+53T2 |
| 59 | 1+59T2 |
| 61 | 1−5.09T+61T2 |
| 67 | 1+3.25T+67T2 |
| 71 | 1−1.32T+71T2 |
| 73 | 1−16.5T+73T2 |
| 79 | 1−11.2T+79T2 |
| 83 | 1+6.19T+83T2 |
| 89 | 1+11.6T+89T2 |
| 97 | 1+17.9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.299188409379086985163201407174, −7.70978490289662335078219414827, −6.66309533391090313085671419640, −6.31409246288072125601485836429, −5.46708088910072345842167089718, −4.08050975262303829175866257678, −3.91820568119709272520041352285, −3.23757888162928826721489264790, −1.71681658209574510326074413655, −0.76654623292882484452203057510,
0.76654623292882484452203057510, 1.71681658209574510326074413655, 3.23757888162928826721489264790, 3.91820568119709272520041352285, 4.08050975262303829175866257678, 5.46708088910072345842167089718, 6.31409246288072125601485836429, 6.66309533391090313085671419640, 7.70978490289662335078219414827, 8.299188409379086985163201407174