Properties

Label 2-4788-1.1-c1-0-0
Degree $2$
Conductor $4788$
Sign $1$
Analytic cond. $38.2323$
Root an. cond. $6.18323$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.51·5-s − 7-s − 0.779·11-s − 1.36·13-s − 6.75·17-s − 19-s + 5.71·23-s + 7.32·25-s − 4.29·29-s + 4.32·31-s + 3.51·35-s − 6.65·37-s − 8.70·41-s − 4.32·43-s − 7.66·47-s + 49-s − 7.53·53-s + 2.73·55-s − 6.65·61-s + 4.80·65-s − 0.960·67-s + 5.97·71-s + 11.9·73-s + 0.779·77-s + 8.96·79-s + 3.88·83-s + 23.7·85-s + ⋯
L(s)  = 1  − 1.57·5-s − 0.377·7-s − 0.234·11-s − 0.379·13-s − 1.63·17-s − 0.229·19-s + 1.19·23-s + 1.46·25-s − 0.796·29-s + 0.777·31-s + 0.593·35-s − 1.09·37-s − 1.36·41-s − 0.660·43-s − 1.11·47-s + 0.142·49-s − 1.03·53-s + 0.368·55-s − 0.852·61-s + 0.595·65-s − 0.117·67-s + 0.709·71-s + 1.39·73-s + 0.0887·77-s + 1.00·79-s + 0.426·83-s + 2.57·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4788 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4788\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 19\)
Sign: $1$
Analytic conductor: \(38.2323\)
Root analytic conductor: \(6.18323\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4788,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5718877744\)
\(L(\frac12)\) \(\approx\) \(0.5718877744\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
19 \( 1 + T \)
good5 \( 1 + 3.51T + 5T^{2} \)
11 \( 1 + 0.779T + 11T^{2} \)
13 \( 1 + 1.36T + 13T^{2} \)
17 \( 1 + 6.75T + 17T^{2} \)
23 \( 1 - 5.71T + 23T^{2} \)
29 \( 1 + 4.29T + 29T^{2} \)
31 \( 1 - 4.32T + 31T^{2} \)
37 \( 1 + 6.65T + 37T^{2} \)
41 \( 1 + 8.70T + 41T^{2} \)
43 \( 1 + 4.32T + 43T^{2} \)
47 \( 1 + 7.66T + 47T^{2} \)
53 \( 1 + 7.53T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 + 6.65T + 61T^{2} \)
67 \( 1 + 0.960T + 67T^{2} \)
71 \( 1 - 5.97T + 71T^{2} \)
73 \( 1 - 11.9T + 73T^{2} \)
79 \( 1 - 8.96T + 79T^{2} \)
83 \( 1 - 3.88T + 83T^{2} \)
89 \( 1 + 3.77T + 89T^{2} \)
97 \( 1 - 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.299059061160017945646896691509, −7.55380476862569822671766122416, −6.87297861033597097714864088735, −6.40449450896473975923026910310, −4.99765724387899710884929236086, −4.67118412439856927074724404387, −3.65743047197526392009454039906, −3.12178518949581915028880520518, −1.96923964101389673472215954539, −0.39708426359086448397722834034, 0.39708426359086448397722834034, 1.96923964101389673472215954539, 3.12178518949581915028880520518, 3.65743047197526392009454039906, 4.67118412439856927074724404387, 4.99765724387899710884929236086, 6.40449450896473975923026910310, 6.87297861033597097714864088735, 7.55380476862569822671766122416, 8.299059061160017945646896691509

Graph of the $Z$-function along the critical line