L(s) = 1 | + (−0.5 − 0.866i)3-s + (2 − 3.46i)5-s + (−2 − 1.73i)7-s + (1 − 1.73i)9-s + (1.5 + 2.59i)11-s − 5·13-s − 3.99·15-s + (0.5 + 0.866i)17-s + (−3 + 5.19i)19-s + (−0.499 + 2.59i)21-s + (2 − 3.46i)23-s + (−5.49 − 9.52i)25-s − 5·27-s + 8·29-s + (1.5 − 2.59i)33-s + ⋯ |
L(s) = 1 | + (−0.288 − 0.499i)3-s + (0.894 − 1.54i)5-s + (−0.755 − 0.654i)7-s + (0.333 − 0.577i)9-s + (0.452 + 0.783i)11-s − 1.38·13-s − 1.03·15-s + (0.121 + 0.210i)17-s + (−0.688 + 1.19i)19-s + (−0.109 + 0.566i)21-s + (0.417 − 0.722i)23-s + (−1.09 − 1.90i)25-s − 0.962·27-s + 1.48·29-s + (0.261 − 0.452i)33-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 476 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 476 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.605 + 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.547015 - 1.10346i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.547015 - 1.10346i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (2 + 1.73i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
good | 3 | \( 1 + (0.5 + 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-2 + 3.46i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5T + 13T^{2} \) |
| 19 | \( 1 + (3 - 5.19i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2 + 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 8T + 29T^{2} \) |
| 31 | \( 1 + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-4 + 6.92i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 8T + 41T^{2} \) |
| 43 | \( 1 - 10T + 43T^{2} \) |
| 47 | \( 1 + (-1 + 1.73i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (1.5 + 2.59i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1 + 1.73i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4 + 6.92i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (7 + 12.1i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 7T + 71T^{2} \) |
| 73 | \( 1 + (-4 - 6.92i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (7.5 - 12.9i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 12T + 83T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 18T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35486219380780348092691761783, −9.739531373154519506040565257706, −9.135565609968013842425093580532, −7.939229705611444732851104076085, −6.83022545110749464947171567896, −6.12057786449719530044730100420, −4.92772260857320028913971866498, −4.05756286642614708584885173730, −2.06167778531779518806792174935, −0.77736879848003819330441892225,
2.41017011917080799956297620662, 3.10334143367717061002397666597, 4.74676173703891443300394719050, 5.82696301981483944496796448661, 6.61798013325581887009937250510, 7.38835861956298908950794173935, 8.939380906251546439201050092857, 9.804646222048664801357594556682, 10.30833381592883759392033763398, 11.14016967911275198332198693851