L(s) = 1 | + (0.5 + 0.866i)3-s + (2 + 1.73i)7-s + (1 − 1.73i)9-s + (2.5 + 4.33i)11-s − 5·13-s + (0.5 + 0.866i)17-s + (3 − 5.19i)19-s + (−0.499 + 2.59i)21-s + (−2 + 3.46i)23-s + (2.5 + 4.33i)25-s + 5·27-s + 4·29-s + (−2.5 + 4.33i)33-s + (−4 + 6.92i)37-s + (−2.5 − 4.33i)39-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + (0.755 + 0.654i)7-s + (0.333 − 0.577i)9-s + (0.753 + 1.30i)11-s − 1.38·13-s + (0.121 + 0.210i)17-s + (0.688 − 1.19i)19-s + (−0.109 + 0.566i)21-s + (−0.417 + 0.722i)23-s + (0.5 + 0.866i)25-s + 0.962·27-s + 0.742·29-s + (−0.435 + 0.753i)33-s + (−0.657 + 1.13i)37-s + (−0.400 − 0.693i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 476 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 476 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.51781 + 0.752422i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.51781 + 0.752422i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-2 - 1.73i)T \) |
| 17 | \( 1 + (-0.5 - 0.866i)T \) |
good | 3 | \( 1 + (-0.5 - 0.866i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-2.5 - 4.33i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5T + 13T^{2} \) |
| 19 | \( 1 + (-3 + 5.19i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2 - 3.46i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 4T + 29T^{2} \) |
| 31 | \( 1 + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4 - 6.92i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 4T + 41T^{2} \) |
| 43 | \( 1 + 6T + 43T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.5 + 9.52i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5 + 8.66i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5 + 8.66i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 9T + 71T^{2} \) |
| 73 | \( 1 + (2 + 3.46i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (4.5 - 7.79i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 4T + 83T^{2} \) |
| 89 | \( 1 + (-7.5 + 12.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 18T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.23531069903192166498734560927, −9.835149806812365384822016159906, −9.581463170252919500187415214443, −8.615433627680208873560939957816, −7.41990891745679063868411709760, −6.70081315645900508324114976890, −5.09884622381532029711602365656, −4.57593435215229523296921584938, −3.16590876743410920438074084037, −1.76410491695041619740276124733,
1.17778144460264655931512169754, 2.61363896895923577898072564749, 4.07215862131710558042867532441, 5.09396971022954596103606947524, 6.34026231463760749894498317388, 7.43828929365060795735738802250, 7.979761100353735473653471487696, 8.920383449795084278142472428340, 10.16665789367693681511386836437, 10.76070078927853563800227546472