L(s) = 1 | + (−1.28 + 0.740i)2-s + (0.157 − 0.0908i)3-s + (0.0969 − 0.167i)4-s + (−0.134 + 0.232i)6-s − 1.30i·7-s − 2.67i·8-s + (−1.48 + 2.56i)9-s + 4.98·11-s − 0.0352i·12-s + (−0.351 − 0.203i)13-s + (0.965 + 1.67i)14-s + (2.17 + 3.76i)16-s + (−2.38 + 1.37i)17-s − 4.39i·18-s + (4.35 − 0.0955i)19-s + ⋯ |
L(s) = 1 | + (−0.907 + 0.523i)2-s + (0.0908 − 0.0524i)3-s + (0.0484 − 0.0839i)4-s + (−0.0549 + 0.0951i)6-s − 0.492i·7-s − 0.945i·8-s + (−0.494 + 0.856i)9-s + 1.50·11-s − 0.0101i·12-s + (−0.0975 − 0.0563i)13-s + (0.258 + 0.447i)14-s + (0.543 + 0.941i)16-s + (−0.577 + 0.333i)17-s − 1.03i·18-s + (0.999 − 0.0219i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.248 - 0.968i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.248 - 0.968i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.679374 + 0.527213i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.679374 + 0.527213i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (-4.35 + 0.0955i)T \) |
good | 2 | \( 1 + (1.28 - 0.740i)T + (1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.157 + 0.0908i)T + (1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + 1.30iT - 7T^{2} \) |
| 11 | \( 1 - 4.98T + 11T^{2} \) |
| 13 | \( 1 + (0.351 + 0.203i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.38 - 1.37i)T + (8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-6.02 - 3.47i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (2.00 - 3.47i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 2.57T + 31T^{2} \) |
| 37 | \( 1 - 3.71iT - 37T^{2} \) |
| 41 | \( 1 + (-0.607 - 1.05i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.70 - 1.56i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-5.63 - 3.25i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.47 - 3.16i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.61 - 9.72i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.467 - 0.808i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (4.58 + 2.64i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.817 - 1.41i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (6.65 - 3.84i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (7.27 + 12.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 15.2iT - 83T^{2} \) |
| 89 | \( 1 + (-7.10 + 12.3i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-15.8 + 9.14i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.06145633427498977328959848800, −10.09755002871540069387488257958, −9.097487669167826107938867446833, −8.680036868157212128521032308979, −7.43752057395838732697569810199, −7.05514618259196389622480677351, −5.79771037144846773348120591941, −4.41183137924044296836354152350, −3.27181880841286001415966610954, −1.29173614852179622037082151659,
0.853422278832169112607622453644, 2.37287478737508932707016123438, 3.70537502943446461264781542777, 5.15479178345879010400032186209, 6.22169015375313443369583992891, 7.26334961687536130927653540569, 8.699743735897775999885061041559, 9.052977450823591130254577747900, 9.663538445127767360367600274292, 10.80028930130594039665620980681