L(s) = 1 | + (1.28 + 0.740i)2-s + (−0.157 − 0.0908i)3-s + (0.0969 + 0.167i)4-s + (−0.134 − 0.232i)6-s − 1.30i·7-s − 2.67i·8-s + (−1.48 − 2.56i)9-s + 4.98·11-s − 0.0352i·12-s + (0.351 − 0.203i)13-s + (0.965 − 1.67i)14-s + (2.17 − 3.76i)16-s + (2.38 + 1.37i)17-s − 4.39i·18-s + (4.35 + 0.0955i)19-s + ⋯ |
L(s) = 1 | + (0.907 + 0.523i)2-s + (−0.0908 − 0.0524i)3-s + (0.0484 + 0.0839i)4-s + (−0.0549 − 0.0951i)6-s − 0.492i·7-s − 0.945i·8-s + (−0.494 − 0.856i)9-s + 1.50·11-s − 0.0101i·12-s + (0.0975 − 0.0563i)13-s + (0.258 − 0.447i)14-s + (0.543 − 0.941i)16-s + (0.577 + 0.333i)17-s − 1.03i·18-s + (0.999 + 0.0219i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.07824 - 0.413291i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.07824 - 0.413291i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (-4.35 - 0.0955i)T \) |
good | 2 | \( 1 + (-1.28 - 0.740i)T + (1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (0.157 + 0.0908i)T + (1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 + 1.30iT - 7T^{2} \) |
| 11 | \( 1 - 4.98T + 11T^{2} \) |
| 13 | \( 1 + (-0.351 + 0.203i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-2.38 - 1.37i)T + (8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (6.02 - 3.47i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.00 + 3.47i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.57T + 31T^{2} \) |
| 37 | \( 1 - 3.71iT - 37T^{2} \) |
| 41 | \( 1 + (-0.607 + 1.05i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.70 - 1.56i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (5.63 - 3.25i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (5.47 - 3.16i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-5.61 + 9.72i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.467 + 0.808i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.58 + 2.64i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.817 + 1.41i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-6.65 - 3.84i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (7.27 - 12.6i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 15.2iT - 83T^{2} \) |
| 89 | \( 1 + (-7.10 - 12.3i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (15.8 + 9.14i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22194969951858805305798627175, −9.757204808152494289462040530446, −9.446645495496977664071312891242, −8.028677785780651241823635958344, −6.92113664143325832333050608448, −6.19497563295357593753204377487, −5.42938835336693173602393906606, −4.03236496636507790029175504551, −3.52387323259516535222142604567, −1.14052972539749290784109710412,
1.94356939986211400959903267578, 3.19413511011578000625592159008, 4.19092689882619986709719808562, 5.26347466567295407191787450452, 6.01959519458106255312440994816, 7.41941522547022343747501718367, 8.456662436108817723018663044066, 9.241007173499590094975417285793, 10.42073383341137263258195088438, 11.51406549195543596152253131202