L(s) = 1 | + 1.27i·2-s + 1.65i·3-s + 0.377·4-s − 2.10·6-s + 3.65i·7-s + 3.02i·8-s + 0.273·9-s + 2.65·11-s + 0.622i·12-s − 6.13i·13-s − 4.65·14-s − 3.10·16-s + 2.34i·17-s + 0.348i·18-s − 19-s + ⋯ |
L(s) = 1 | + 0.900i·2-s + 0.953i·3-s + 0.188·4-s − 0.858·6-s + 1.37i·7-s + 1.07i·8-s + 0.0912·9-s + 0.799·11-s + 0.179i·12-s − 1.70i·13-s − 1.24·14-s − 0.775·16-s + 0.569i·17-s + 0.0822i·18-s − 0.229·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.383936 + 1.62638i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.383936 + 1.62638i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 2 | \( 1 - 1.27iT - 2T^{2} \) |
| 3 | \( 1 - 1.65iT - 3T^{2} \) |
| 7 | \( 1 - 3.65iT - 7T^{2} \) |
| 11 | \( 1 - 2.65T + 11T^{2} \) |
| 13 | \( 1 + 6.13iT - 13T^{2} \) |
| 17 | \( 1 - 2.34iT - 17T^{2} \) |
| 23 | \( 1 + 5.48iT - 23T^{2} \) |
| 29 | \( 1 + 0.651T + 29T^{2} \) |
| 31 | \( 1 + 6.67T + 31T^{2} \) |
| 37 | \( 1 + 8.70iT - 37T^{2} \) |
| 41 | \( 1 - 1.93T + 41T^{2} \) |
| 43 | \( 1 - 2.65iT - 43T^{2} \) |
| 47 | \( 1 - 3.71iT - 47T^{2} \) |
| 53 | \( 1 + 13.7iT - 53T^{2} \) |
| 59 | \( 1 - 7.84T + 59T^{2} \) |
| 61 | \( 1 + 1.92T + 61T^{2} \) |
| 67 | \( 1 + 4.44iT - 67T^{2} \) |
| 71 | \( 1 - 3.54T + 71T^{2} \) |
| 73 | \( 1 - 2.48iT - 73T^{2} \) |
| 79 | \( 1 - 15.1T + 79T^{2} \) |
| 83 | \( 1 - 14.7iT - 83T^{2} \) |
| 89 | \( 1 - 5.06T + 89T^{2} \) |
| 97 | \( 1 - 3.22iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16088688504006662722730404326, −10.53084012501705393318992069755, −9.413540091375989854689213306615, −8.651155709458814762597196302799, −7.85000029251860074406846126566, −6.61484039715692411447055451789, −5.71288062202192544679471992978, −5.08011489686288432605022771968, −3.65493824072221312134780137273, −2.30349300319789999501504063094,
1.13604571833398348087700464347, 1.95462892868371112159918293067, 3.61456565048904532477824036870, 4.39446479170640736799797195350, 6.36475511902536047336481280950, 7.05333417228798679656757557806, 7.49033419502169392513978140275, 9.112298041363744161358540084875, 9.871459799094369748043888131177, 10.83423176797868817533960782823