Properties

Label 2-475-5.4-c1-0-3
Degree $2$
Conductor $475$
Sign $0.894 + 0.447i$
Analytic cond. $3.79289$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.80i·2-s + 0.554i·3-s − 5.85·4-s + 1.55·6-s + 3.04i·7-s + 10.7i·8-s + 2.69·9-s − 2.93·11-s − 3.24i·12-s + 3.24i·13-s + 8.54·14-s + 18.5·16-s + 2.15i·17-s − 7.54i·18-s + 19-s + ⋯
L(s)  = 1  − 1.98i·2-s + 0.320i·3-s − 2.92·4-s + 0.634·6-s + 1.15i·7-s + 3.81i·8-s + 0.897·9-s − 0.886·11-s − 0.937i·12-s + 0.900i·13-s + 2.28·14-s + 4.63·16-s + 0.523i·17-s − 1.77i·18-s + 0.229·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $0.894 + 0.447i$
Analytic conductor: \(3.79289\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{475} (324, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :1/2),\ 0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.928330 - 0.219149i\)
\(L(\frac12)\) \(\approx\) \(0.928330 - 0.219149i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 - T \)
good2 \( 1 + 2.80iT - 2T^{2} \)
3 \( 1 - 0.554iT - 3T^{2} \)
7 \( 1 - 3.04iT - 7T^{2} \)
11 \( 1 + 2.93T + 11T^{2} \)
13 \( 1 - 3.24iT - 13T^{2} \)
17 \( 1 - 2.15iT - 17T^{2} \)
23 \( 1 - 1.19iT - 23T^{2} \)
29 \( 1 - 1.77T + 29T^{2} \)
31 \( 1 + 9.34T + 31T^{2} \)
37 \( 1 - 1.15iT - 37T^{2} \)
41 \( 1 - 8.57T + 41T^{2} \)
43 \( 1 - 5.27iT - 43T^{2} \)
47 \( 1 + 2.35iT - 47T^{2} \)
53 \( 1 - 8.82iT - 53T^{2} \)
59 \( 1 - 5.70T + 59T^{2} \)
61 \( 1 + 9.96T + 61T^{2} \)
67 \( 1 + 4.98iT - 67T^{2} \)
71 \( 1 - 2.70T + 71T^{2} \)
73 \( 1 - 13.7iT - 73T^{2} \)
79 \( 1 + 5.66T + 79T^{2} \)
83 \( 1 + 3.00iT - 83T^{2} \)
89 \( 1 - 10.2T + 89T^{2} \)
97 \( 1 + 3.24iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.96651566917551750844933541280, −10.21062241042963116016371858346, −9.364791529799236567533219988804, −8.866119038112904528944402426121, −7.70688154620317537695053180861, −5.73176859208518170009877720723, −4.80060297209746597936582554436, −3.87284062161553547902962259639, −2.67238391842089591536089258971, −1.66574271046411139001224410892, 0.63230589045254169891980932520, 3.67975427645049979454676207583, 4.70248937170534383877256010340, 5.57574773541202239567828154445, 6.69127412730484052769146063552, 7.57497732345294696120004535289, 7.69419758391912148107997437293, 8.981239391301163627550663966713, 9.980031870470896089421101650175, 10.61592045633528684949453945570

Graph of the $Z$-function along the critical line