L(s) = 1 | − 1.48i·2-s − 0.806i·3-s − 0.193·4-s − 1.19·6-s + 3.35i·7-s − 2.67i·8-s + 2.35·9-s + 0.962·11-s + 0.156i·12-s − 6.15i·13-s + 4.96·14-s − 4.35·16-s − 6.31i·17-s − 3.48i·18-s + 19-s + ⋯ |
L(s) = 1 | − 1.04i·2-s − 0.465i·3-s − 0.0969·4-s − 0.487·6-s + 1.26i·7-s − 0.945i·8-s + 0.783·9-s + 0.290·11-s + 0.0451i·12-s − 1.70i·13-s + 1.32·14-s − 1.08·16-s − 1.53i·17-s − 0.820i·18-s + 0.229·19-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(324,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
≈ |
0.860484−1.39229i |
L(21) |
≈ |
0.860484−1.39229i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1−T |
good | 2 | 1+1.48iT−2T2 |
| 3 | 1+0.806iT−3T2 |
| 7 | 1−3.35iT−7T2 |
| 11 | 1−0.962T+11T2 |
| 13 | 1+6.15iT−13T2 |
| 17 | 1+6.31iT−17T2 |
| 23 | 1−4.96iT−23T2 |
| 29 | 1−3.61T+29T2 |
| 31 | 1+5.92T+31T2 |
| 37 | 1−10.1iT−37T2 |
| 41 | 1−6.31T+41T2 |
| 43 | 1−4.12iT−43T2 |
| 47 | 1−3.35iT−47T2 |
| 53 | 1+1.84iT−53T2 |
| 59 | 1−6.38T+59T2 |
| 61 | 1+11.2T+61T2 |
| 67 | 1+6.73iT−67T2 |
| 71 | 1+0.775T+71T2 |
| 73 | 1+0.387iT−73T2 |
| 79 | 1−0.836T+79T2 |
| 83 | 1−7.03iT−83T2 |
| 89 | 1+7.08T+89T2 |
| 97 | 1−10.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.87330483658798523731711821941, −9.840112875962938741536600039919, −9.304425900635043248687814289381, −7.979247868708084433214581644409, −7.11773524871055099062767365417, −5.99240968010511142263142228909, −4.91071574355800502009757620631, −3.30449075657326734063347055999, −2.49977397895818048729073091438, −1.13577466378416316519171220224,
1.79980934376102832186888373327, 3.97165143462199310648785119715, 4.45394485049696642444098347691, 5.91032526669856359768868508896, 6.91051756611928927108608369606, 7.28939368428451597780305742248, 8.491244452330510267636194237337, 9.374241071299322481098771766690, 10.52087605087791118043096793097, 10.96793069604540662808276854664