Properties

Label 2-475-5.4-c1-0-18
Degree $2$
Conductor $475$
Sign $-0.447 + 0.894i$
Analytic cond. $3.79289$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.48i·2-s − 0.806i·3-s − 0.193·4-s − 1.19·6-s + 3.35i·7-s − 2.67i·8-s + 2.35·9-s + 0.962·11-s + 0.156i·12-s − 6.15i·13-s + 4.96·14-s − 4.35·16-s − 6.31i·17-s − 3.48i·18-s + 19-s + ⋯
L(s)  = 1  − 1.04i·2-s − 0.465i·3-s − 0.0969·4-s − 0.487·6-s + 1.26i·7-s − 0.945i·8-s + 0.783·9-s + 0.290·11-s + 0.0451i·12-s − 1.70i·13-s + 1.32·14-s − 1.08·16-s − 1.53i·17-s − 0.820i·18-s + 0.229·19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(3.79289\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{475} (324, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.860484 - 1.39229i\)
\(L(\frac12)\) \(\approx\) \(0.860484 - 1.39229i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 - T \)
good2 \( 1 + 1.48iT - 2T^{2} \)
3 \( 1 + 0.806iT - 3T^{2} \)
7 \( 1 - 3.35iT - 7T^{2} \)
11 \( 1 - 0.962T + 11T^{2} \)
13 \( 1 + 6.15iT - 13T^{2} \)
17 \( 1 + 6.31iT - 17T^{2} \)
23 \( 1 - 4.96iT - 23T^{2} \)
29 \( 1 - 3.61T + 29T^{2} \)
31 \( 1 + 5.92T + 31T^{2} \)
37 \( 1 - 10.1iT - 37T^{2} \)
41 \( 1 - 6.31T + 41T^{2} \)
43 \( 1 - 4.12iT - 43T^{2} \)
47 \( 1 - 3.35iT - 47T^{2} \)
53 \( 1 + 1.84iT - 53T^{2} \)
59 \( 1 - 6.38T + 59T^{2} \)
61 \( 1 + 11.2T + 61T^{2} \)
67 \( 1 + 6.73iT - 67T^{2} \)
71 \( 1 + 0.775T + 71T^{2} \)
73 \( 1 + 0.387iT - 73T^{2} \)
79 \( 1 - 0.836T + 79T^{2} \)
83 \( 1 - 7.03iT - 83T^{2} \)
89 \( 1 + 7.08T + 89T^{2} \)
97 \( 1 - 10.9iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.87330483658798523731711821941, −9.840112875962938741536600039919, −9.304425900635043248687814289381, −7.979247868708084433214581644409, −7.11773524871055099062767365417, −5.99240968010511142263142228909, −4.91071574355800502009757620631, −3.30449075657326734063347055999, −2.49977397895818048729073091438, −1.13577466378416316519171220224, 1.79980934376102832186888373327, 3.97165143462199310648785119715, 4.45394485049696642444098347691, 5.91032526669856359768868508896, 6.91051756611928927108608369606, 7.28939368428451597780305742248, 8.491244452330510267636194237337, 9.374241071299322481098771766690, 10.52087605087791118043096793097, 10.96793069604540662808276854664

Graph of the $Z$-function along the critical line