Properties

Label 2-475-475.111-c1-0-25
Degree $2$
Conductor $475$
Sign $-0.342 + 0.939i$
Analytic cond. $3.79289$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.46 − 0.172i)2-s + (−0.0802 − 2.29i)3-s + (4.04 + 0.569i)4-s + (1.58 + 1.57i)5-s + (−0.198 + 5.67i)6-s + (−0.754 − 1.30i)7-s + (−5.04 − 1.07i)8-s + (−2.28 + 0.159i)9-s + (−3.62 − 4.15i)10-s + (0.143 + 1.36i)11-s + (0.983 − 9.35i)12-s + (−0.976 − 1.44i)13-s + (1.63 + 3.34i)14-s + (3.50 − 3.76i)15-s + (4.36 + 1.25i)16-s + (1.57 − 3.89i)17-s + ⋯
L(s)  = 1  + (−1.74 − 0.121i)2-s + (−0.0463 − 1.32i)3-s + (2.02 + 0.284i)4-s + (0.708 + 0.705i)5-s + (−0.0808 + 2.31i)6-s + (−0.285 − 0.493i)7-s + (−1.78 − 0.379i)8-s + (−0.761 + 0.0532i)9-s + (−1.14 − 1.31i)10-s + (0.0431 + 0.410i)11-s + (0.283 − 2.70i)12-s + (−0.270 − 0.401i)13-s + (0.436 + 0.894i)14-s + (0.903 − 0.973i)15-s + (1.09 + 0.313i)16-s + (0.381 − 0.945i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.342 + 0.939i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.342 + 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $-0.342 + 0.939i$
Analytic conductor: \(3.79289\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{475} (111, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :1/2),\ -0.342 + 0.939i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.372942 - 0.532829i\)
\(L(\frac12)\) \(\approx\) \(0.372942 - 0.532829i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-1.58 - 1.57i)T \)
19 \( 1 + (-3.54 + 2.54i)T \)
good2 \( 1 + (2.46 + 0.172i)T + (1.98 + 0.278i)T^{2} \)
3 \( 1 + (0.0802 + 2.29i)T + (-2.99 + 0.209i)T^{2} \)
7 \( 1 + (0.754 + 1.30i)T + (-3.5 + 6.06i)T^{2} \)
11 \( 1 + (-0.143 - 1.36i)T + (-10.7 + 2.28i)T^{2} \)
13 \( 1 + (0.976 + 1.44i)T + (-4.86 + 12.0i)T^{2} \)
17 \( 1 + (-1.57 + 3.89i)T + (-12.2 - 11.8i)T^{2} \)
23 \( 1 + (-4.81 - 4.65i)T + (0.802 + 22.9i)T^{2} \)
29 \( 1 + (1.01 + 2.51i)T + (-20.8 + 20.1i)T^{2} \)
31 \( 1 + (-4.17 + 4.63i)T + (-3.24 - 30.8i)T^{2} \)
37 \( 1 + (7.68 + 5.58i)T + (11.4 + 35.1i)T^{2} \)
41 \( 1 + (3.04 + 0.874i)T + (34.7 + 21.7i)T^{2} \)
43 \( 1 + (-0.767 + 4.35i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (0.790 + 1.95i)T + (-33.8 + 32.6i)T^{2} \)
53 \( 1 + (-4.18 - 0.588i)T + (50.9 + 14.6i)T^{2} \)
59 \( 1 + (-2.54 - 10.2i)T + (-52.0 + 27.6i)T^{2} \)
61 \( 1 + (9.62 + 9.29i)T + (2.12 + 60.9i)T^{2} \)
67 \( 1 + (-0.916 - 0.572i)T + (29.3 + 60.2i)T^{2} \)
71 \( 1 + (-0.506 - 0.269i)T + (39.7 + 58.8i)T^{2} \)
73 \( 1 + (4.39 - 6.51i)T + (-27.3 - 67.6i)T^{2} \)
79 \( 1 + (0.212 + 6.08i)T + (-78.8 + 5.51i)T^{2} \)
83 \( 1 + (-0.157 + 0.175i)T + (-8.67 - 82.5i)T^{2} \)
89 \( 1 + (-3.38 + 0.969i)T + (75.4 - 47.1i)T^{2} \)
97 \( 1 + (13.4 - 8.39i)T + (42.5 - 87.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.48422909123436734869633687581, −9.777926435332549735725927020328, −9.081827143876006618945495646723, −7.76966539189820547390494141626, −7.16352169278859046338537379536, −6.85276539582261770158934394563, −5.55116192547531211003488295323, −2.99488922203427132578588545248, −1.98125768825837825617711784752, −0.76135613208774109903582384506, 1.44152961061975023521385121286, 3.07548102651274775918310407707, 4.72440696681314053370434741793, 5.77255006829144965408364428550, 6.79126020316407290165049573487, 8.231491123334979519356222051629, 8.869119600109114900699827068917, 9.435500967771919606123762442517, 10.20236825717524501359566000915, 10.62222952869387063310048592239

Graph of the $Z$-function along the critical line