Properties

Label 2-475-19.7-c1-0-9
Degree $2$
Conductor $475$
Sign $-0.332 + 0.943i$
Analytic cond. $3.79289$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.08 − 1.87i)2-s + (0.706 + 1.22i)3-s + (−1.35 + 2.34i)4-s + (1.53 − 2.65i)6-s − 1.76·7-s + 1.53·8-s + (0.502 − 0.869i)9-s + 1.83·11-s − 3.82·12-s + (1.30 − 2.25i)13-s + (1.91 + 3.31i)14-s + (1.03 + 1.79i)16-s + (−2.11 − 3.66i)17-s − 2.17·18-s + (4.01 − 1.68i)19-s + ⋯
L(s)  = 1  + (−0.767 − 1.32i)2-s + (0.407 + 0.706i)3-s + (−0.677 + 1.17i)4-s + (0.625 − 1.08i)6-s − 0.665·7-s + 0.544·8-s + (0.167 − 0.289i)9-s + 0.554·11-s − 1.10·12-s + (0.361 − 0.625i)13-s + (0.510 + 0.884i)14-s + (0.259 + 0.449i)16-s + (−0.513 − 0.889i)17-s − 0.513·18-s + (0.922 − 0.386i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.332 + 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.332 + 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $-0.332 + 0.943i$
Analytic conductor: \(3.79289\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{475} (26, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :1/2),\ -0.332 + 0.943i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.559565 - 0.790758i\)
\(L(\frac12)\) \(\approx\) \(0.559565 - 0.790758i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 + (-4.01 + 1.68i)T \)
good2 \( 1 + (1.08 + 1.87i)T + (-1 + 1.73i)T^{2} \)
3 \( 1 + (-0.706 - 1.22i)T + (-1.5 + 2.59i)T^{2} \)
7 \( 1 + 1.76T + 7T^{2} \)
11 \( 1 - 1.83T + 11T^{2} \)
13 \( 1 + (-1.30 + 2.25i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (2.11 + 3.66i)T + (-8.5 + 14.7i)T^{2} \)
23 \( 1 + (-1.10 + 1.91i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (-3.56 + 6.17i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 - 0.303T + 31T^{2} \)
37 \( 1 - 3.90T + 37T^{2} \)
41 \( 1 + (4.11 + 7.13i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (1.17 + 2.03i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + (-3.62 + 6.28i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + (5.31 - 9.19i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (-6.02 - 10.4i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (5.26 - 9.12i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (6.51 - 11.2i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 + (5.91 + 10.2i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (-4.58 - 7.94i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 + (3.94 + 6.82i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 - 6.93T + 83T^{2} \)
89 \( 1 + (-6.23 + 10.8i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (3.87 + 6.71i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.42558285594561067077771097569, −9.969866841873824415782196061932, −9.122547612664276662174494735363, −8.717836786705881439698714303819, −7.29146624386686707568840220628, −6.06595057458097954489068544412, −4.44923843118397330158869530158, −3.42622953729876189332582200801, −2.66264012564034306757586437517, −0.815684780045378418563873250216, 1.46887737928621608504058306615, 3.29457179697885986331146498158, 4.92075629529027030712818506919, 6.34009167159638753747782188585, 6.66217860335758983467637074133, 7.67945198878103214124009147914, 8.349167593663260191410131097308, 9.220038675561615281082765188978, 9.923556750481681911669351934166, 11.15501499934377497966790826623

Graph of the $Z$-function along the critical line