L(s) = 1 | + (−0.431 − 0.747i)2-s + (−1.53 − 2.66i)3-s + (0.627 − 1.08i)4-s + (−1.32 + 2.30i)6-s + 0.566·7-s − 2.80·8-s + (−3.24 + 5.61i)9-s − 1.91·11-s − 3.86·12-s + (−0.0972 + 0.168i)13-s + (−0.244 − 0.423i)14-s + (−0.0438 − 0.0760i)16-s + (−2.64 − 4.58i)17-s + 5.59·18-s + (−2.36 + 3.65i)19-s + ⋯ |
L(s) = 1 | + (−0.305 − 0.528i)2-s + (−0.888 − 1.53i)3-s + (0.313 − 0.543i)4-s + (−0.542 + 0.939i)6-s + 0.214·7-s − 0.993·8-s + (−1.08 + 1.87i)9-s − 0.576·11-s − 1.11·12-s + (−0.0269 + 0.0467i)13-s + (−0.0653 − 0.113i)14-s + (−0.0109 − 0.0190i)16-s + (−0.642 − 1.11i)17-s + 1.31·18-s + (−0.543 + 0.839i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.257 - 0.966i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.257 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.274940 + 0.357619i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.274940 + 0.357619i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (2.36 - 3.65i)T \) |
good | 2 | \( 1 + (0.431 + 0.747i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (1.53 + 2.66i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 - 0.566T + 7T^{2} \) |
| 11 | \( 1 + 1.91T + 11T^{2} \) |
| 13 | \( 1 + (0.0972 - 0.168i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.64 + 4.58i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (1.68 - 2.92i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.36 + 7.56i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 5.65T + 31T^{2} \) |
| 37 | \( 1 - 0.955T + 37T^{2} \) |
| 41 | \( 1 + (5.02 + 8.70i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.46 - 4.27i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.41 - 7.65i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.10 + 7.10i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.85 + 3.21i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.75 + 3.04i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.02 - 3.50i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.59 + 4.49i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (4.30 + 7.45i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.31 + 5.73i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 4.51T + 83T^{2} \) |
| 89 | \( 1 + (1.68 - 2.92i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (7.59 + 13.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60295444475932514819899414956, −9.754425043033534137794462705608, −8.390855671524220097383597847740, −7.53874647345897980470514627433, −6.53748252280722401333515163584, −5.93261357016730290286510435915, −4.89107335733928854722546536027, −2.64116635791619730581787046315, −1.68762232768748586571225411580, −0.32245129511521123450540693935,
2.87743556853289236613669667394, 4.12229232275385861023371375830, 4.98156739590223893994444172316, 6.10038654298557615937351209811, 6.83167891063163961448092741057, 8.331344481220509837029653326747, 8.814370355136126178962758883700, 10.02475564979755108825668644122, 10.67661375662914938523166022850, 11.40172181660714741497514595355