L(s) = 1 | + (−1 − 1.73i)3-s + (1 − 1.73i)4-s + 4·7-s + (−0.499 + 0.866i)9-s + 3·11-s − 3.99·12-s + (1 − 1.73i)13-s + (−1.99 − 3.46i)16-s + (3 + 5.19i)17-s + (−3.5 + 2.59i)19-s + (−4 − 6.92i)21-s − 4.00·27-s + (4 − 6.92i)28-s + (1.5 − 2.59i)29-s − 7·31-s + ⋯ |
L(s) = 1 | + (−0.577 − 0.999i)3-s + (0.5 − 0.866i)4-s + 1.51·7-s + (−0.166 + 0.288i)9-s + 0.904·11-s − 1.15·12-s + (0.277 − 0.480i)13-s + (−0.499 − 0.866i)16-s + (0.727 + 1.26i)17-s + (−0.802 + 0.596i)19-s + (−0.872 − 1.51i)21-s − 0.769·27-s + (0.755 − 1.30i)28-s + (0.278 − 0.482i)29-s − 1.25·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0977 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06118 - 1.17050i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06118 - 1.17050i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (3.5 - 2.59i)T \) |
good | 2 | \( 1 + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (1 + 1.73i)T + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 - 4T + 7T^{2} \) |
| 11 | \( 1 - 3T + 11T^{2} \) |
| 13 | \( 1 + (-1 + 1.73i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3 - 5.19i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 + 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 7T + 31T^{2} \) |
| 37 | \( 1 + 8T + 37T^{2} \) |
| 41 | \( 1 + (-3 - 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2 + 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3 - 5.19i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.5 - 12.9i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.5 - 4.33i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-1 + 1.73i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-1.5 - 2.59i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-4 - 6.92i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.5 + 4.33i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 12T + 83T^{2} \) |
| 89 | \( 1 + (-7.5 + 12.9i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-4 - 6.92i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.86667897450936964890459142585, −10.23460724456847848843181183484, −8.812319320166885670974834814309, −7.88098328543309962338861424988, −6.99493743745264066898582476958, −6.03635348207729154368808649323, −5.45898555686003375075929085438, −4.03663261716282539335541559312, −1.86919817563922856821254525608, −1.24096142123401968690163984206,
1.90450901963427336876409659814, 3.59627781104575035677850307993, 4.53081813332288507663557053442, 5.30231486765980986190015992088, 6.72053709103147934181714728347, 7.60332834659405498782401041705, 8.614350793160160309967491943006, 9.412174090981647598879264232348, 10.71593279964040892144337013764, 11.25680112181617328687651782649