L(s) = 1 | + (1 + 1.73i)2-s + (−0.999 + 1.73i)4-s + 4·7-s + (1.5 − 2.59i)9-s − 11-s + (−1 + 1.73i)13-s + (4 + 6.92i)14-s + (1.99 + 3.46i)16-s + (−1 − 1.73i)17-s + 6·18-s + (−3.5 + 2.59i)19-s + (−1 − 1.73i)22-s + (3 − 5.19i)23-s − 3.99·26-s + (−3.99 + 6.92i)28-s + (−4.5 + 7.79i)29-s + ⋯ |
L(s) = 1 | + (0.707 + 1.22i)2-s + (−0.499 + 0.866i)4-s + 1.51·7-s + (0.5 − 0.866i)9-s − 0.301·11-s + (−0.277 + 0.480i)13-s + (1.06 + 1.85i)14-s + (0.499 + 0.866i)16-s + (−0.242 − 0.420i)17-s + 1.41·18-s + (−0.802 + 0.596i)19-s + (−0.213 − 0.369i)22-s + (0.625 − 1.08i)23-s − 0.784·26-s + (−0.755 + 1.30i)28-s + (−0.835 + 1.44i)29-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(0.0977−0.995i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(0.0977−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
0.0977−0.995i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :1/2), 0.0977−0.995i)
|
Particular Values
L(1) |
≈ |
1.75517+1.59125i |
L(21) |
≈ |
1.75517+1.59125i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+(3.5−2.59i)T |
good | 2 | 1+(−1−1.73i)T+(−1+1.73i)T2 |
| 3 | 1+(−1.5+2.59i)T2 |
| 7 | 1−4T+7T2 |
| 11 | 1+T+11T2 |
| 13 | 1+(1−1.73i)T+(−6.5−11.2i)T2 |
| 17 | 1+(1+1.73i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−3+5.19i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.5−7.79i)T+(−14.5−25.1i)T2 |
| 31 | 1+7T+31T2 |
| 37 | 1+2T+37T2 |
| 41 | 1+(1+1.73i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−1−1.73i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−3+5.19i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−2+3.46i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4.5+7.79i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−3.5+6.06i)T+(−30.5−52.8i)T2 |
| 67 | 1+(5−8.66i)T+(−33.5−58.0i)T2 |
| 71 | 1+(0.5+0.866i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−5−8.66i)T+(−36.5+63.2i)T2 |
| 79 | 1+(0.5+0.866i)T+(−39.5+68.4i)T2 |
| 83 | 1−6T+83T2 |
| 89 | 1+(−5.5+9.52i)T+(−44.5−77.0i)T2 |
| 97 | 1+(3+5.19i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.21206814392667914991093789148, −10.47926428389554250498594186373, −9.066647111327061047407457202854, −8.284883554916736610418978676258, −7.28682255474782080712788413973, −6.70759651690475235308707442941, −5.47336379223912505359138887712, −4.75128138598538874450553548668, −3.85089679886022452512250861402, −1.77629153868512302240926579949,
1.60205579459502770893204042843, 2.45324272264237617901690965065, 3.98980113475805215523919362745, 4.80195433734292026316143436394, 5.53545734999154402714993023198, 7.43139367874779369906396395452, 7.935791464766070634966570650783, 9.231403414712642924893437783538, 10.47932195585320547667850945242, 10.90471578686655770881722212476