L(s) = 1 | + (1 + 1.73i)2-s + (−0.999 + 1.73i)4-s + 4·7-s + (1.5 − 2.59i)9-s − 11-s + (−1 + 1.73i)13-s + (4 + 6.92i)14-s + (1.99 + 3.46i)16-s + (−1 − 1.73i)17-s + 6·18-s + (−3.5 + 2.59i)19-s + (−1 − 1.73i)22-s + (3 − 5.19i)23-s − 3.99·26-s + (−3.99 + 6.92i)28-s + (−4.5 + 7.79i)29-s + ⋯ |
L(s) = 1 | + (0.707 + 1.22i)2-s + (−0.499 + 0.866i)4-s + 1.51·7-s + (0.5 − 0.866i)9-s − 0.301·11-s + (−0.277 + 0.480i)13-s + (1.06 + 1.85i)14-s + (0.499 + 0.866i)16-s + (−0.242 − 0.420i)17-s + 1.41·18-s + (−0.802 + 0.596i)19-s + (−0.213 − 0.369i)22-s + (0.625 − 1.08i)23-s − 0.784·26-s + (−0.755 + 1.30i)28-s + (−0.835 + 1.44i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0977 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0977 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.75517 + 1.59125i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.75517 + 1.59125i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (3.5 - 2.59i)T \) |
good | 2 | \( 1 + (-1 - 1.73i)T + (-1 + 1.73i)T^{2} \) |
| 3 | \( 1 + (-1.5 + 2.59i)T^{2} \) |
| 7 | \( 1 - 4T + 7T^{2} \) |
| 11 | \( 1 + T + 11T^{2} \) |
| 13 | \( 1 + (1 - 1.73i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1 + 1.73i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (-3 + 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.5 - 7.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 7T + 31T^{2} \) |
| 37 | \( 1 + 2T + 37T^{2} \) |
| 41 | \( 1 + (1 + 1.73i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-1 - 1.73i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3 + 5.19i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-2 + 3.46i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.5 + 7.79i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (5 - 8.66i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-5 - 8.66i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (-5.5 + 9.52i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (3 + 5.19i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.21206814392667914991093789148, −10.47926428389554250498594186373, −9.066647111327061047407457202854, −8.284883554916736610418978676258, −7.28682255474782080712788413973, −6.70759651690475235308707442941, −5.47336379223912505359138887712, −4.75128138598538874450553548668, −3.85089679886022452512250861402, −1.77629153868512302240926579949,
1.60205579459502770893204042843, 2.45324272264237617901690965065, 3.98980113475805215523919362745, 4.80195433734292026316143436394, 5.53545734999154402714993023198, 7.43139367874779369906396395452, 7.935791464766070634966570650783, 9.231403414712642924893437783538, 10.47932195585320547667850945242, 10.90471578686655770881722212476