L(s) = 1 | + 4-s + 9-s − 2·11-s + 16-s − 19-s + 36-s − 2·44-s − 49-s − 2·61-s + 64-s − 76-s + 81-s − 2·99-s − 2·101-s + ⋯ |
L(s) = 1 | + 4-s + 9-s − 2·11-s + 16-s − 19-s + 36-s − 2·44-s − 49-s − 2·61-s + 64-s − 76-s + 81-s − 2·99-s − 2·101-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.025856114\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.025856114\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 2 | \( ( 1 - T )( 1 + T ) \) |
| 3 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( ( 1 + T )^{2} \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( ( 1 - T )( 1 + T ) \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 + T )^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( ( 1 - T )( 1 + T ) \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.92589093376341656534887151392, −10.55255274398139820172084891263, −9.705610040248617143663172232154, −8.238351875950604978574364954925, −7.58302198357719280831316953677, −6.70986731944779184213579089094, −5.65739929328088967394736940749, −4.55107441902203862755643435150, −3.04174701047875108100977709927, −1.94756753976557909188690809793,
1.94756753976557909188690809793, 3.04174701047875108100977709927, 4.55107441902203862755643435150, 5.65739929328088967394736940749, 6.70986731944779184213579089094, 7.58302198357719280831316953677, 8.238351875950604978574364954925, 9.705610040248617143663172232154, 10.55255274398139820172084891263, 10.92589093376341656534887151392