L(s) = 1 | + (0.740 − 1.28i)2-s + (−1.42 + 2.47i)3-s + (−0.0969 − 0.167i)4-s + (2.11 + 3.66i)6-s + 3.78·7-s + 2.67·8-s + (−2.58 − 4.46i)9-s − 5.59·11-s + 0.554·12-s + (2.45 + 4.24i)13-s + (2.80 − 4.85i)14-s + (2.17 − 3.76i)16-s + (−0.875 + 1.51i)17-s − 7.64·18-s + (0.636 + 4.31i)19-s + ⋯ |
L(s) = 1 | + (0.523 − 0.907i)2-s + (−0.824 + 1.42i)3-s + (−0.0484 − 0.0839i)4-s + (0.863 + 1.49i)6-s + 1.43·7-s + 0.945·8-s + (−0.860 − 1.48i)9-s − 1.68·11-s + 0.159·12-s + (0.680 + 1.17i)13-s + (0.749 − 1.29i)14-s + (0.543 − 0.941i)16-s + (−0.212 + 0.367i)17-s − 1.80·18-s + (0.145 + 0.989i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.634 - 0.772i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.634 - 0.772i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.47844 + 0.698643i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.47844 + 0.698643i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (-0.636 - 4.31i)T \) |
good | 2 | \( 1 + (-0.740 + 1.28i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (1.42 - 2.47i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 - 3.78T + 7T^{2} \) |
| 11 | \( 1 + 5.59T + 11T^{2} \) |
| 13 | \( 1 + (-2.45 - 4.24i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (0.875 - 1.51i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-0.290 - 0.503i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (0.832 + 1.44i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.01T + 31T^{2} \) |
| 37 | \( 1 + 2.36T + 37T^{2} \) |
| 41 | \( 1 + (0.417 - 0.723i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.535 - 0.927i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.93 - 3.34i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.39 + 5.88i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.204 + 0.353i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (6.98 + 12.0i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.390 - 0.676i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.18 - 5.52i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.44 + 2.50i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.25 + 10.8i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 10.3T + 83T^{2} \) |
| 89 | \( 1 + (8.92 + 15.4i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.49 + 9.52i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.20325056307454626961687435994, −10.53934560532373322445120284800, −9.913926883229787070968979513265, −8.518898453109765466997359978838, −7.68387311860502731134543162910, −5.99432023460742536101881522211, −4.88549911270949531664431440430, −4.52830940267000153082417463473, −3.43387120647993613350302785857, −1.88909681648723903661872198931,
1.01951605240884858035925876842, 2.43143630532974815149996914050, 4.87768897859918202606440339258, 5.31005872396000869418519707579, 6.15557072617719858144884677366, 7.22735317535734425190228952210, 7.78844546675599673446407372401, 8.385647402969993108862767708530, 10.55484598956289665252142216375, 10.89445256125376499333271916110