L(s) = 1 | + (−1.08 + 1.87i)2-s + (0.706 − 1.22i)3-s + (−1.35 − 2.34i)4-s + (1.53 + 2.65i)6-s − 1.76·7-s + 1.53·8-s + (0.502 + 0.869i)9-s + 1.83·11-s − 3.82·12-s + (1.30 + 2.25i)13-s + (1.91 − 3.31i)14-s + (1.03 − 1.79i)16-s + (−2.11 + 3.66i)17-s − 2.17·18-s + (4.01 + 1.68i)19-s + ⋯ |
L(s) = 1 | + (−0.767 + 1.32i)2-s + (0.407 − 0.706i)3-s + (−0.677 − 1.17i)4-s + (0.625 + 1.08i)6-s − 0.665·7-s + 0.544·8-s + (0.167 + 0.289i)9-s + 0.554·11-s − 1.10·12-s + (0.361 + 0.625i)13-s + (0.510 − 0.884i)14-s + (0.259 − 0.449i)16-s + (−0.513 + 0.889i)17-s − 0.513·18-s + (0.922 + 0.386i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.332 - 0.943i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.332 - 0.943i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.559565 + 0.790758i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.559565 + 0.790758i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (-4.01 - 1.68i)T \) |
good | 2 | \( 1 + (1.08 - 1.87i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.706 + 1.22i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + 1.76T + 7T^{2} \) |
| 11 | \( 1 - 1.83T + 11T^{2} \) |
| 13 | \( 1 + (-1.30 - 2.25i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (2.11 - 3.66i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-1.10 - 1.91i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.56 - 6.17i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 0.303T + 31T^{2} \) |
| 37 | \( 1 - 3.90T + 37T^{2} \) |
| 41 | \( 1 + (4.11 - 7.13i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.17 - 2.03i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.62 - 6.28i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (5.31 + 9.19i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.02 + 10.4i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5.26 + 9.12i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (6.51 + 11.2i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.91 - 10.2i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-4.58 + 7.94i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (3.94 - 6.82i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6.93T + 83T^{2} \) |
| 89 | \( 1 + (-6.23 - 10.8i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (3.87 - 6.71i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.15501499934377497966790826623, −9.923556750481681911669351934166, −9.220038675561615281082765188978, −8.349167593663260191410131097308, −7.67945198878103214124009147914, −6.66217860335758983467637074133, −6.34009167159638753747782188585, −4.92075629529027030712818506919, −3.29457179697885986331146498158, −1.46887737928621608504058306615,
0.815684780045378418563873250216, 2.66264012564034306757586437517, 3.42622953729876189332582200801, 4.44923843118397330158869530158, 6.06595057458097954489068544412, 7.29146624386686707568840220628, 8.717836786705881439698714303819, 9.122547612664276662174494735363, 9.969866841873824415782196061932, 10.42558285594561067077771097569