L(s) = 1 | + (1.22 − 2.12i)2-s + (0.780 − 1.35i)3-s + (−2.01 − 3.49i)4-s + (−1.91 − 3.32i)6-s − 4.50·7-s − 4.99·8-s + (0.281 + 0.487i)9-s + 2.19·11-s − 6.29·12-s + (−1.87 − 3.25i)13-s + (−5.53 + 9.58i)14-s + (−2.09 + 3.63i)16-s + (0.332 − 0.576i)17-s + 1.38·18-s + (3.79 − 2.13i)19-s + ⋯ |
L(s) = 1 | + (0.868 − 1.50i)2-s + (0.450 − 0.780i)3-s + (−1.00 − 1.74i)4-s + (−0.782 − 1.35i)6-s − 1.70·7-s − 1.76·8-s + (0.0938 + 0.162i)9-s + 0.662·11-s − 1.81·12-s + (−0.521 − 0.902i)13-s + (−1.47 + 2.56i)14-s + (−0.524 + 0.909i)16-s + (0.0807 − 0.139i)17-s + 0.326·18-s + (0.871 − 0.490i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.948 - 0.315i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.948 - 0.315i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.320665 + 1.97788i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.320665 + 1.97788i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (-3.79 + 2.13i)T \) |
good | 2 | \( 1 + (-1.22 + 2.12i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.780 + 1.35i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + 4.50T + 7T^{2} \) |
| 11 | \( 1 - 2.19T + 11T^{2} \) |
| 13 | \( 1 + (1.87 + 3.25i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.332 + 0.576i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (0.244 + 0.422i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.79 + 3.11i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 6.83T + 31T^{2} \) |
| 37 | \( 1 - 3.01T + 37T^{2} \) |
| 41 | \( 1 + (0.0362 - 0.0627i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.210 + 0.364i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-2.51 - 4.34i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.30 - 2.26i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.26 - 10.8i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.53 + 6.11i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.86 - 4.95i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (3.48 - 6.03i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (1.47 - 2.56i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.66 - 9.81i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 15.6T + 83T^{2} \) |
| 89 | \( 1 + (-0.668 - 1.15i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.19 + 3.79i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.54468651722662433462532225830, −9.850755407635462809250915872701, −9.184050510872669634407662979103, −7.71248591063186158214913780245, −6.66694026907708763176770367140, −5.61489937796486723114796045550, −4.31514187609089957593355676033, −3.11495598124505707662667730001, −2.57266278393050319686771701531, −0.934105710796841451014442690212,
3.21669337015762043844747614566, 3.85958298314530095996770122887, 4.82542413865052279038440116412, 6.13676523878285161541362112955, 6.65059445769926746956368275160, 7.54497861277769649577090389539, 8.876434038020790553539397147576, 9.437302261584886238329526965427, 10.18643917463953540024314812362, 11.94248107191329901240153117014