L(s) = 1 | + (1.14 − 1.97i)2-s + (−1.25 + 2.17i)3-s + (−1.61 − 2.79i)4-s + (2.86 + 4.96i)6-s − 3.50·7-s − 2.79·8-s + (−1.64 − 2.84i)9-s − 4.50·11-s + 8.07·12-s + (−2.5 − 4.33i)13-s + (−4.00 + 6.94i)14-s + (0.0316 − 0.0547i)16-s + (0.0793 − 0.137i)17-s − 7.50·18-s + (−4.26 + 0.920i)19-s + ⋯ |
L(s) = 1 | + (0.807 − 1.39i)2-s + (−0.723 + 1.25i)3-s + (−0.805 − 1.39i)4-s + (1.16 + 2.02i)6-s − 1.32·7-s − 0.987·8-s + (−0.547 − 0.948i)9-s − 1.35·11-s + 2.33·12-s + (−0.693 − 1.20i)13-s + (−1.07 + 1.85i)14-s + (0.00790 − 0.0136i)16-s + (0.0192 − 0.0333i)17-s − 1.76·18-s + (−0.977 + 0.211i)19-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(−0.813−0.582i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(−0.813−0.582i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
−0.813−0.582i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :1/2), −0.813−0.582i)
|
Particular Values
L(1) |
≈ |
0.0661374+0.205939i |
L(21) |
≈ |
0.0661374+0.205939i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+(4.26−0.920i)T |
good | 2 | 1+(−1.14+1.97i)T+(−1−1.73i)T2 |
| 3 | 1+(1.25−2.17i)T+(−1.5−2.59i)T2 |
| 7 | 1+3.50T+7T2 |
| 11 | 1+4.50T+11T2 |
| 13 | 1+(2.5+4.33i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−0.0793+0.137i)T+(−8.5−14.7i)T2 |
| 23 | 1+(−0.579−1.00i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−1.75−3.03i)T+(−14.5+25.1i)T2 |
| 31 | 1+2.28T+31T2 |
| 37 | 1−10.9T+37T2 |
| 41 | 1+(3.03−5.26i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.67−2.89i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−1.53−2.65i)T+(−23.5+40.7i)T2 |
| 53 | 1+(2.87+4.97i)T+(−26.5+45.8i)T2 |
| 59 | 1+(1.53−2.65i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−0.436−0.756i)T+(−30.5+52.8i)T2 |
| 67 | 1+(4.22+7.31i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−8.11+14.0i)T+(−35.5−61.4i)T2 |
| 73 | 1+(3.57−6.19i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−5.06+8.76i)T+(−39.5−68.4i)T2 |
| 83 | 1+4.85T+83T2 |
| 89 | 1+(−0.556−0.963i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−0.809+1.40i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.55998703799575554561156955048, −10.02042717909538157871654471960, −9.456658743270087684607599663355, −7.82077198152384746434390818703, −6.14872634281463052378911103775, −5.27241373098238115341083553711, −4.56386455995862912981249748125, −3.40688307374145805359966193421, −2.68650354244794469068216419111, −0.10201020570546821500503383326,
2.46877666432954634516220727658, 4.18516220977094387832365994037, 5.35146348392470295361451525187, 6.19030055253175724192564695084, 6.78734650159260270731538044008, 7.38026574699299279418345046448, 8.324767151051877294475340294184, 9.617788465893041322026044962170, 10.81105518472560256017036040510, 12.04268872892607586847846794086