L(s) = 1 | + (1.14 − 1.97i)2-s + (−1.25 + 2.17i)3-s + (−1.61 − 2.79i)4-s + (2.86 + 4.96i)6-s − 3.50·7-s − 2.79·8-s + (−1.64 − 2.84i)9-s − 4.50·11-s + 8.07·12-s + (−2.5 − 4.33i)13-s + (−4.00 + 6.94i)14-s + (0.0316 − 0.0547i)16-s + (0.0793 − 0.137i)17-s − 7.50·18-s + (−4.26 + 0.920i)19-s + ⋯ |
L(s) = 1 | + (0.807 − 1.39i)2-s + (−0.723 + 1.25i)3-s + (−0.805 − 1.39i)4-s + (1.16 + 2.02i)6-s − 1.32·7-s − 0.987·8-s + (−0.547 − 0.948i)9-s − 1.35·11-s + 2.33·12-s + (−0.693 − 1.20i)13-s + (−1.07 + 1.85i)14-s + (0.00790 − 0.0136i)16-s + (0.0192 − 0.0333i)17-s − 1.76·18-s + (−0.977 + 0.211i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.813 - 0.582i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.813 - 0.582i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0661374 + 0.205939i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0661374 + 0.205939i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (4.26 - 0.920i)T \) |
good | 2 | \( 1 + (-1.14 + 1.97i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (1.25 - 2.17i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + 3.50T + 7T^{2} \) |
| 11 | \( 1 + 4.50T + 11T^{2} \) |
| 13 | \( 1 + (2.5 + 4.33i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.0793 + 0.137i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (-0.579 - 1.00i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.75 - 3.03i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.28T + 31T^{2} \) |
| 37 | \( 1 - 10.9T + 37T^{2} \) |
| 41 | \( 1 + (3.03 - 5.26i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.67 - 2.89i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.53 - 2.65i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (2.87 + 4.97i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (1.53 - 2.65i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.436 - 0.756i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.22 + 7.31i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-8.11 + 14.0i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (3.57 - 6.19i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.06 + 8.76i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 4.85T + 83T^{2} \) |
| 89 | \( 1 + (-0.556 - 0.963i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.809 + 1.40i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.55998703799575554561156955048, −10.02042717909538157871654471960, −9.456658743270087684607599663355, −7.82077198152384746434390818703, −6.14872634281463052378911103775, −5.27241373098238115341083553711, −4.56386455995862912981249748125, −3.40688307374145805359966193421, −2.68650354244794469068216419111, −0.10201020570546821500503383326,
2.46877666432954634516220727658, 4.18516220977094387832365994037, 5.35146348392470295361451525187, 6.19030055253175724192564695084, 6.78734650159260270731538044008, 7.38026574699299279418345046448, 8.324767151051877294475340294184, 9.617788465893041322026044962170, 10.81105518472560256017036040510, 12.04268872892607586847846794086