L(s) = 1 | + (0.740 − 1.28i)2-s + (0.0908 − 0.157i)3-s + (−0.0969 − 0.167i)4-s + (−0.134 − 0.232i)6-s − 1.30·7-s + 2.67·8-s + (1.48 + 2.56i)9-s + 4.98·11-s − 0.0352·12-s + (0.203 + 0.351i)13-s + (−0.965 + 1.67i)14-s + (2.17 − 3.76i)16-s + (1.37 − 2.38i)17-s + 4.39·18-s + (−4.35 − 0.0955i)19-s + ⋯ |
L(s) = 1 | + (0.523 − 0.907i)2-s + (0.0524 − 0.0908i)3-s + (−0.0484 − 0.0839i)4-s + (−0.0549 − 0.0951i)6-s − 0.492·7-s + 0.945·8-s + (0.494 + 0.856i)9-s + 1.50·11-s − 0.0101·12-s + (0.0563 + 0.0975i)13-s + (−0.258 + 0.447i)14-s + (0.543 − 0.941i)16-s + (0.333 − 0.577i)17-s + 1.03·18-s + (−0.999 − 0.0219i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.655 + 0.755i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.655 + 0.755i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.94452 - 0.887400i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.94452 - 0.887400i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (4.35 + 0.0955i)T \) |
good | 2 | \( 1 + (-0.740 + 1.28i)T + (-1 - 1.73i)T^{2} \) |
| 3 | \( 1 + (-0.0908 + 0.157i)T + (-1.5 - 2.59i)T^{2} \) |
| 7 | \( 1 + 1.30T + 7T^{2} \) |
| 11 | \( 1 - 4.98T + 11T^{2} \) |
| 13 | \( 1 + (-0.203 - 0.351i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.37 + 2.38i)T + (-8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + (3.47 + 6.02i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.00 - 3.47i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.57T + 31T^{2} \) |
| 37 | \( 1 - 3.71T + 37T^{2} \) |
| 41 | \( 1 + (-0.607 + 1.05i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (1.56 - 2.70i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.25 - 5.63i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (3.16 + 5.47i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (5.61 - 9.72i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.467 + 0.808i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.64 + 4.58i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.817 + 1.41i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (3.84 - 6.65i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.27 + 12.6i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 15.2T + 83T^{2} \) |
| 89 | \( 1 + (7.10 + 12.3i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (9.14 - 15.8i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.96580965636596278950322980409, −10.27180344400938729626010756896, −9.304593322032336632229757201818, −8.195022561223160123966831125031, −7.13873966014677926655071741802, −6.27311682514988582592674196787, −4.69297010501616871105268148245, −4.00099082697031471097229663204, −2.77101835865932690081705794350, −1.57318216110760876594210483812,
1.52734987891438424828430035882, 3.66835510561360995180920661237, 4.31865729961090625826213148827, 5.82557199429568837331335016103, 6.39624724836649779889770172940, 7.13053286013700905420601326187, 8.266371119638830772881463038706, 9.404404931488522472359316983062, 10.03936143948877775455808582500, 11.18057284716157059918194555135