L(s) = 1 | + (0.740 − 1.28i)2-s + (0.0908 − 0.157i)3-s + (−0.0969 − 0.167i)4-s + (−0.134 − 0.232i)6-s − 1.30·7-s + 2.67·8-s + (1.48 + 2.56i)9-s + 4.98·11-s − 0.0352·12-s + (0.203 + 0.351i)13-s + (−0.965 + 1.67i)14-s + (2.17 − 3.76i)16-s + (1.37 − 2.38i)17-s + 4.39·18-s + (−4.35 − 0.0955i)19-s + ⋯ |
L(s) = 1 | + (0.523 − 0.907i)2-s + (0.0524 − 0.0908i)3-s + (−0.0484 − 0.0839i)4-s + (−0.0549 − 0.0951i)6-s − 0.492·7-s + 0.945·8-s + (0.494 + 0.856i)9-s + 1.50·11-s − 0.0101·12-s + (0.0563 + 0.0975i)13-s + (−0.258 + 0.447i)14-s + (0.543 − 0.941i)16-s + (0.333 − 0.577i)17-s + 1.03·18-s + (−0.999 − 0.0219i)19-s + ⋯ |
Λ(s)=(=(475s/2ΓC(s)L(s)(0.655+0.755i)Λ(2−s)
Λ(s)=(=(475s/2ΓC(s+1/2)L(s)(0.655+0.755i)Λ(1−s)
Degree: |
2 |
Conductor: |
475
= 52⋅19
|
Sign: |
0.655+0.755i
|
Analytic conductor: |
3.79289 |
Root analytic conductor: |
1.94753 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ475(201,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 475, ( :1/2), 0.655+0.755i)
|
Particular Values
L(1) |
≈ |
1.94452−0.887400i |
L(21) |
≈ |
1.94452−0.887400i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 19 | 1+(4.35+0.0955i)T |
good | 2 | 1+(−0.740+1.28i)T+(−1−1.73i)T2 |
| 3 | 1+(−0.0908+0.157i)T+(−1.5−2.59i)T2 |
| 7 | 1+1.30T+7T2 |
| 11 | 1−4.98T+11T2 |
| 13 | 1+(−0.203−0.351i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−1.37+2.38i)T+(−8.5−14.7i)T2 |
| 23 | 1+(3.47+6.02i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−2.00−3.47i)T+(−14.5+25.1i)T2 |
| 31 | 1+2.57T+31T2 |
| 37 | 1−3.71T+37T2 |
| 41 | 1+(−0.607+1.05i)T+(−20.5−35.5i)T2 |
| 43 | 1+(1.56−2.70i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−3.25−5.63i)T+(−23.5+40.7i)T2 |
| 53 | 1+(3.16+5.47i)T+(−26.5+45.8i)T2 |
| 59 | 1+(5.61−9.72i)T+(−29.5−51.0i)T2 |
| 61 | 1+(0.467+0.808i)T+(−30.5+52.8i)T2 |
| 67 | 1+(2.64+4.58i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−0.817+1.41i)T+(−35.5−61.4i)T2 |
| 73 | 1+(3.84−6.65i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−7.27+12.6i)T+(−39.5−68.4i)T2 |
| 83 | 1+15.2T+83T2 |
| 89 | 1+(7.10+12.3i)T+(−44.5+77.0i)T2 |
| 97 | 1+(9.14−15.8i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.96580965636596278950322980409, −10.27180344400938729626010756896, −9.304593322032336632229757201818, −8.195022561223160123966831125031, −7.13873966014677926655071741802, −6.27311682514988582592674196787, −4.69297010501616871105268148245, −4.00099082697031471097229663204, −2.77101835865932690081705794350, −1.57318216110760876594210483812,
1.52734987891438424828430035882, 3.66835510561360995180920661237, 4.31865729961090625826213148827, 5.82557199429568837331335016103, 6.39624724836649779889770172940, 7.13053286013700905420601326187, 8.266371119638830772881463038706, 9.404404931488522472359316983062, 10.03936143948877775455808582500, 11.18057284716157059918194555135