Properties

Label 2-475-19.11-c1-0-0
Degree $2$
Conductor $475$
Sign $-0.257 + 0.966i$
Analytic cond. $3.79289$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.431 + 0.747i)2-s + (−1.53 + 2.66i)3-s + (0.627 + 1.08i)4-s + (−1.32 − 2.30i)6-s + 0.566·7-s − 2.80·8-s + (−3.24 − 5.61i)9-s − 1.91·11-s − 3.86·12-s + (−0.0972 − 0.168i)13-s + (−0.244 + 0.423i)14-s + (−0.0438 + 0.0760i)16-s + (−2.64 + 4.58i)17-s + 5.59·18-s + (−2.36 − 3.65i)19-s + ⋯
L(s)  = 1  + (−0.305 + 0.528i)2-s + (−0.888 + 1.53i)3-s + (0.313 + 0.543i)4-s + (−0.542 − 0.939i)6-s + 0.214·7-s − 0.993·8-s + (−1.08 − 1.87i)9-s − 0.576·11-s − 1.11·12-s + (−0.0269 − 0.0467i)13-s + (−0.0653 + 0.113i)14-s + (−0.0109 + 0.0190i)16-s + (−0.642 + 1.11i)17-s + 1.31·18-s + (−0.543 − 0.839i)19-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.257 + 0.966i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.257 + 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $-0.257 + 0.966i$
Analytic conductor: \(3.79289\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{475} (201, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :1/2),\ -0.257 + 0.966i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.274940 - 0.357619i\)
\(L(\frac12)\) \(\approx\) \(0.274940 - 0.357619i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 + (2.36 + 3.65i)T \)
good2 \( 1 + (0.431 - 0.747i)T + (-1 - 1.73i)T^{2} \)
3 \( 1 + (1.53 - 2.66i)T + (-1.5 - 2.59i)T^{2} \)
7 \( 1 - 0.566T + 7T^{2} \)
11 \( 1 + 1.91T + 11T^{2} \)
13 \( 1 + (0.0972 + 0.168i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + (2.64 - 4.58i)T + (-8.5 - 14.7i)T^{2} \)
23 \( 1 + (1.68 + 2.92i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-4.36 - 7.56i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 5.65T + 31T^{2} \)
37 \( 1 - 0.955T + 37T^{2} \)
41 \( 1 + (5.02 - 8.70i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-2.46 + 4.27i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (4.41 + 7.65i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (-4.10 - 7.10i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (1.85 - 3.21i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-1.75 - 3.04i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (2.02 + 3.50i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (2.59 - 4.49i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + (4.30 - 7.45i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (3.31 - 5.73i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + 4.51T + 83T^{2} \)
89 \( 1 + (1.68 + 2.92i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (7.59 - 13.1i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.40172181660714741497514595355, −10.67661375662914938523166022850, −10.02475564979755108825668644122, −8.814370355136126178962758883700, −8.331344481220509837029653326747, −6.83167891063163961448092741057, −6.10038654298557615937351209811, −4.98156739590223893994444172316, −4.12229232275385861023371375830, −2.87743556853289236613669667394, 0.32245129511521123450540693935, 1.68762232768748586571225411580, 2.64116635791619730581787046315, 4.89107335733928854722546536027, 5.93261357016730290286510435915, 6.53748252280722401333515163584, 7.53874647345897980470514627433, 8.390855671524220097383597847740, 9.754425043033534137794462705608, 10.60295444475932514819899414956

Graph of the $Z$-function along the critical line