Properties

Label 2-475-1.1-c3-0-6
Degree $2$
Conductor $475$
Sign $1$
Analytic cond. $28.0259$
Root an. cond. $5.29395$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.89·2-s − 2.95·3-s − 4.42·4-s + 5.58·6-s − 5.94·7-s + 23.4·8-s − 18.2·9-s + 11.5·11-s + 13.0·12-s − 22.6·13-s + 11.2·14-s − 9.02·16-s − 120.·17-s + 34.5·18-s − 19·19-s + 17.5·21-s − 21.7·22-s − 63.9·23-s − 69.3·24-s + 42.7·26-s + 133.·27-s + 26.2·28-s − 89.7·29-s − 251.·31-s − 170.·32-s − 34.0·33-s + 227.·34-s + ⋯
L(s)  = 1  − 0.668·2-s − 0.568·3-s − 0.553·4-s + 0.380·6-s − 0.320·7-s + 1.03·8-s − 0.676·9-s + 0.315·11-s + 0.314·12-s − 0.482·13-s + 0.214·14-s − 0.140·16-s − 1.71·17-s + 0.452·18-s − 0.229·19-s + 0.182·21-s − 0.211·22-s − 0.579·23-s − 0.590·24-s + 0.322·26-s + 0.953·27-s + 0.177·28-s − 0.574·29-s − 1.45·31-s − 0.944·32-s − 0.179·33-s + 1.14·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(28.0259\)
Root analytic conductor: \(5.29395\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3758122930\)
\(L(\frac12)\) \(\approx\) \(0.3758122930\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 + 19T \)
good2 \( 1 + 1.89T + 8T^{2} \)
3 \( 1 + 2.95T + 27T^{2} \)
7 \( 1 + 5.94T + 343T^{2} \)
11 \( 1 - 11.5T + 1.33e3T^{2} \)
13 \( 1 + 22.6T + 2.19e3T^{2} \)
17 \( 1 + 120.T + 4.91e3T^{2} \)
23 \( 1 + 63.9T + 1.21e4T^{2} \)
29 \( 1 + 89.7T + 2.43e4T^{2} \)
31 \( 1 + 251.T + 2.97e4T^{2} \)
37 \( 1 + 198.T + 5.06e4T^{2} \)
41 \( 1 - 373.T + 6.89e4T^{2} \)
43 \( 1 - 448.T + 7.95e4T^{2} \)
47 \( 1 - 186.T + 1.03e5T^{2} \)
53 \( 1 + 364.T + 1.48e5T^{2} \)
59 \( 1 + 376.T + 2.05e5T^{2} \)
61 \( 1 - 816.T + 2.26e5T^{2} \)
67 \( 1 + 220.T + 3.00e5T^{2} \)
71 \( 1 - 383.T + 3.57e5T^{2} \)
73 \( 1 - 537.T + 3.89e5T^{2} \)
79 \( 1 - 1.06e3T + 4.93e5T^{2} \)
83 \( 1 - 616.T + 5.71e5T^{2} \)
89 \( 1 + 90.2T + 7.04e5T^{2} \)
97 \( 1 - 524.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.74517060590801912081719777041, −9.436482581375267902912533771777, −9.043350233772598800900331803727, −8.017505772753163634616575100963, −6.97102109035760990027347337903, −5.93973126883544044364403939594, −4.89325207441706797424285493401, −3.86676459926048703157287418771, −2.15506696931849794623376472593, −0.42241668340230481051776815580, 0.42241668340230481051776815580, 2.15506696931849794623376472593, 3.86676459926048703157287418771, 4.89325207441706797424285493401, 5.93973126883544044364403939594, 6.97102109035760990027347337903, 8.017505772753163634616575100963, 9.043350233772598800900331803727, 9.436482581375267902912533771777, 10.74517060590801912081719777041

Graph of the $Z$-function along the critical line