Properties

Label 2-475-1.1-c3-0-29
Degree $2$
Conductor $475$
Sign $1$
Analytic cond. $28.0259$
Root an. cond. $5.29395$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.96·2-s − 6.71·3-s + 7.70·4-s − 26.6·6-s + 25.8·7-s − 1.18·8-s + 18.1·9-s − 8.13·11-s − 51.7·12-s + 4.56·13-s + 102.·14-s − 66.2·16-s + 62.5·17-s + 71.7·18-s − 19·19-s − 173.·21-s − 32.2·22-s + 52.7·23-s + 7.93·24-s + 18.0·26-s + 59.7·27-s + 198.·28-s + 171.·29-s + 168.·31-s − 253.·32-s + 54.6·33-s + 247.·34-s + ⋯
L(s)  = 1  + 1.40·2-s − 1.29·3-s + 0.962·4-s − 1.81·6-s + 1.39·7-s − 0.0521·8-s + 0.670·9-s − 0.222·11-s − 1.24·12-s + 0.0974·13-s + 1.95·14-s − 1.03·16-s + 0.892·17-s + 0.939·18-s − 0.229·19-s − 1.80·21-s − 0.312·22-s + 0.478·23-s + 0.0674·24-s + 0.136·26-s + 0.425·27-s + 1.34·28-s + 1.09·29-s + 0.977·31-s − 1.39·32-s + 0.288·33-s + 1.25·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(28.0259\)
Root analytic conductor: \(5.29395\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.951994240\)
\(L(\frac12)\) \(\approx\) \(2.951994240\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 + 19T \)
good2 \( 1 - 3.96T + 8T^{2} \)
3 \( 1 + 6.71T + 27T^{2} \)
7 \( 1 - 25.8T + 343T^{2} \)
11 \( 1 + 8.13T + 1.33e3T^{2} \)
13 \( 1 - 4.56T + 2.19e3T^{2} \)
17 \( 1 - 62.5T + 4.91e3T^{2} \)
23 \( 1 - 52.7T + 1.21e4T^{2} \)
29 \( 1 - 171.T + 2.43e4T^{2} \)
31 \( 1 - 168.T + 2.97e4T^{2} \)
37 \( 1 - 147.T + 5.06e4T^{2} \)
41 \( 1 - 308.T + 6.89e4T^{2} \)
43 \( 1 - 448.T + 7.95e4T^{2} \)
47 \( 1 + 113.T + 1.03e5T^{2} \)
53 \( 1 + 155.T + 1.48e5T^{2} \)
59 \( 1 - 182.T + 2.05e5T^{2} \)
61 \( 1 - 404.T + 2.26e5T^{2} \)
67 \( 1 - 106.T + 3.00e5T^{2} \)
71 \( 1 - 472.T + 3.57e5T^{2} \)
73 \( 1 + 843.T + 3.89e5T^{2} \)
79 \( 1 + 591.T + 4.93e5T^{2} \)
83 \( 1 + 290.T + 5.71e5T^{2} \)
89 \( 1 + 964.T + 7.04e5T^{2} \)
97 \( 1 - 219.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.14257607317209084995767334607, −10.14427045917877166297628027787, −8.659694557468588902537564026628, −7.57002309337987325001596970058, −6.38062699982005776042183722939, −5.63100643969690231456477576396, −4.91283871887317861925698601151, −4.25640372100472110897810053270, −2.68830346625041858979088412528, −0.981616591833813509542561010687, 0.981616591833813509542561010687, 2.68830346625041858979088412528, 4.25640372100472110897810053270, 4.91283871887317861925698601151, 5.63100643969690231456477576396, 6.38062699982005776042183722939, 7.57002309337987325001596970058, 8.659694557468588902537564026628, 10.14427045917877166297628027787, 11.14257607317209084995767334607

Graph of the $Z$-function along the critical line