L(s) = 1 | − 3·2-s − 7·3-s + 4-s + 21·6-s − 11·7-s + 21·8-s + 22·9-s − 36·11-s − 7·12-s − 65·13-s + 33·14-s − 71·16-s + 87·17-s − 66·18-s + 19·19-s + 77·21-s + 108·22-s + 129·23-s − 147·24-s + 195·26-s + 35·27-s − 11·28-s + 231·29-s + 110·31-s + 45·32-s + 252·33-s − 261·34-s + ⋯ |
L(s) = 1 | − 1.06·2-s − 1.34·3-s + 1/8·4-s + 1.42·6-s − 0.593·7-s + 0.928·8-s + 0.814·9-s − 0.986·11-s − 0.168·12-s − 1.38·13-s + 0.629·14-s − 1.10·16-s + 1.24·17-s − 0.864·18-s + 0.229·19-s + 0.800·21-s + 1.04·22-s + 1.16·23-s − 1.25·24-s + 1.47·26-s + 0.249·27-s − 0.0742·28-s + 1.47·29-s + 0.637·31-s + 0.248·32-s + 1.32·33-s − 1.31·34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 - p T \) |
good | 2 | \( 1 + 3 T + p^{3} T^{2} \) |
| 3 | \( 1 + 7 T + p^{3} T^{2} \) |
| 7 | \( 1 + 11 T + p^{3} T^{2} \) |
| 11 | \( 1 + 36 T + p^{3} T^{2} \) |
| 13 | \( 1 + 5 p T + p^{3} T^{2} \) |
| 17 | \( 1 - 87 T + p^{3} T^{2} \) |
| 23 | \( 1 - 129 T + p^{3} T^{2} \) |
| 29 | \( 1 - 231 T + p^{3} T^{2} \) |
| 31 | \( 1 - 110 T + p^{3} T^{2} \) |
| 37 | \( 1 - 142 T + p^{3} T^{2} \) |
| 41 | \( 1 + 330 T + p^{3} T^{2} \) |
| 43 | \( 1 + 74 T + p^{3} T^{2} \) |
| 47 | \( 1 - 336 T + p^{3} T^{2} \) |
| 53 | \( 1 + 501 T + p^{3} T^{2} \) |
| 59 | \( 1 - 633 T + p^{3} T^{2} \) |
| 61 | \( 1 + 88 T + p^{3} T^{2} \) |
| 67 | \( 1 + 119 T + p^{3} T^{2} \) |
| 71 | \( 1 + 204 T + p^{3} T^{2} \) |
| 73 | \( 1 + 407 T + p^{3} T^{2} \) |
| 79 | \( 1 - 1262 T + p^{3} T^{2} \) |
| 83 | \( 1 + 270 T + p^{3} T^{2} \) |
| 89 | \( 1 + 30 T + p^{3} T^{2} \) |
| 97 | \( 1 + 1406 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.13382826615934062991372279248, −9.587448419624688787775397332055, −8.314571924634919307730089989341, −7.43137278155472345895170122379, −6.58798611948677387207028408746, −5.30958717655021744951160933848, −4.76074782891117710191230729187, −2.84899563486474129464299933524, −0.964196503869604319956234292696, 0,
0.964196503869604319956234292696, 2.84899563486474129464299933524, 4.76074782891117710191230729187, 5.30958717655021744951160933848, 6.58798611948677387207028408746, 7.43137278155472345895170122379, 8.314571924634919307730089989341, 9.587448419624688787775397332055, 10.13382826615934062991372279248