Properties

Label 2-475-1.1-c3-0-27
Degree $2$
Conductor $475$
Sign $-1$
Analytic cond. $28.0259$
Root an. cond. $5.29395$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·2-s − 7·3-s + 4-s + 21·6-s − 11·7-s + 21·8-s + 22·9-s − 36·11-s − 7·12-s − 65·13-s + 33·14-s − 71·16-s + 87·17-s − 66·18-s + 19·19-s + 77·21-s + 108·22-s + 129·23-s − 147·24-s + 195·26-s + 35·27-s − 11·28-s + 231·29-s + 110·31-s + 45·32-s + 252·33-s − 261·34-s + ⋯
L(s)  = 1  − 1.06·2-s − 1.34·3-s + 1/8·4-s + 1.42·6-s − 0.593·7-s + 0.928·8-s + 0.814·9-s − 0.986·11-s − 0.168·12-s − 1.38·13-s + 0.629·14-s − 1.10·16-s + 1.24·17-s − 0.864·18-s + 0.229·19-s + 0.800·21-s + 1.04·22-s + 1.16·23-s − 1.25·24-s + 1.47·26-s + 0.249·27-s − 0.0742·28-s + 1.47·29-s + 0.637·31-s + 0.248·32-s + 1.32·33-s − 1.31·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(28.0259\)
Root analytic conductor: \(5.29395\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 475,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 - p T \)
good2 \( 1 + 3 T + p^{3} T^{2} \)
3 \( 1 + 7 T + p^{3} T^{2} \)
7 \( 1 + 11 T + p^{3} T^{2} \)
11 \( 1 + 36 T + p^{3} T^{2} \)
13 \( 1 + 5 p T + p^{3} T^{2} \)
17 \( 1 - 87 T + p^{3} T^{2} \)
23 \( 1 - 129 T + p^{3} T^{2} \)
29 \( 1 - 231 T + p^{3} T^{2} \)
31 \( 1 - 110 T + p^{3} T^{2} \)
37 \( 1 - 142 T + p^{3} T^{2} \)
41 \( 1 + 330 T + p^{3} T^{2} \)
43 \( 1 + 74 T + p^{3} T^{2} \)
47 \( 1 - 336 T + p^{3} T^{2} \)
53 \( 1 + 501 T + p^{3} T^{2} \)
59 \( 1 - 633 T + p^{3} T^{2} \)
61 \( 1 + 88 T + p^{3} T^{2} \)
67 \( 1 + 119 T + p^{3} T^{2} \)
71 \( 1 + 204 T + p^{3} T^{2} \)
73 \( 1 + 407 T + p^{3} T^{2} \)
79 \( 1 - 1262 T + p^{3} T^{2} \)
83 \( 1 + 270 T + p^{3} T^{2} \)
89 \( 1 + 30 T + p^{3} T^{2} \)
97 \( 1 + 1406 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.13382826615934062991372279248, −9.587448419624688787775397332055, −8.314571924634919307730089989341, −7.43137278155472345895170122379, −6.58798611948677387207028408746, −5.30958717655021744951160933848, −4.76074782891117710191230729187, −2.84899563486474129464299933524, −0.964196503869604319956234292696, 0, 0.964196503869604319956234292696, 2.84899563486474129464299933524, 4.76074782891117710191230729187, 5.30958717655021744951160933848, 6.58798611948677387207028408746, 7.43137278155472345895170122379, 8.314571924634919307730089989341, 9.587448419624688787775397332055, 10.13382826615934062991372279248

Graph of the $Z$-function along the critical line