Properties

Label 2-475-1.1-c1-0-21
Degree $2$
Conductor $475$
Sign $1$
Analytic cond. $3.79289$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.37·2-s + 1.27·3-s + 3.65·4-s + 3.02·6-s + 0.726·7-s + 3.92·8-s − 1.37·9-s − 0.273·11-s + 4.65·12-s − 5.95·13-s + 1.72·14-s + 2.02·16-s + 5.27·17-s − 3.27·18-s + 19-s + 0.924·21-s − 0.651·22-s − 3.67·23-s + 4.99·24-s − 14.1·26-s − 5.57·27-s + 2.65·28-s − 2.27·29-s + 3.19·31-s − 3.02·32-s − 0.348·33-s + 12.5·34-s + ⋯
L(s)  = 1  + 1.68·2-s + 0.735·3-s + 1.82·4-s + 1.23·6-s + 0.274·7-s + 1.38·8-s − 0.459·9-s − 0.0825·11-s + 1.34·12-s − 1.65·13-s + 0.461·14-s + 0.507·16-s + 1.27·17-s − 0.771·18-s + 0.229·19-s + 0.201·21-s − 0.138·22-s − 0.767·23-s + 1.02·24-s − 2.77·26-s − 1.07·27-s + 0.501·28-s − 0.422·29-s + 0.574·31-s − 0.535·32-s − 0.0607·33-s + 2.15·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(3.79289\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.059924695\)
\(L(\frac12)\) \(\approx\) \(4.059924695\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 - T \)
good2 \( 1 - 2.37T + 2T^{2} \)
3 \( 1 - 1.27T + 3T^{2} \)
7 \( 1 - 0.726T + 7T^{2} \)
11 \( 1 + 0.273T + 11T^{2} \)
13 \( 1 + 5.95T + 13T^{2} \)
17 \( 1 - 5.27T + 17T^{2} \)
23 \( 1 + 3.67T + 23T^{2} \)
29 \( 1 + 2.27T + 29T^{2} \)
31 \( 1 - 3.19T + 31T^{2} \)
37 \( 1 - 8.12T + 37T^{2} \)
41 \( 1 + 9.43T + 41T^{2} \)
43 \( 1 - 9.81T + 43T^{2} \)
47 \( 1 - 12.1T + 47T^{2} \)
53 \( 1 - 5.69T + 53T^{2} \)
59 \( 1 + 4.20T + 59T^{2} \)
61 \( 1 + 0.103T + 61T^{2} \)
67 \( 1 + 11.7T + 67T^{2} \)
71 \( 1 - 5.75T + 71T^{2} \)
73 \( 1 - 6.67T + 73T^{2} \)
79 \( 1 - 3.87T + 79T^{2} \)
83 \( 1 + 0.488T + 83T^{2} \)
89 \( 1 + 16.4T + 89T^{2} \)
97 \( 1 + 4.44T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.46565112135528399482915620073, −10.22832246189667208581791355391, −9.287547370050828083417562098063, −7.948930766172280682723796366646, −7.31288573754649677519000114720, −5.96676809676042291135130153753, −5.21816996360135943270646722740, −4.19200919580490190485706042531, −3.08706149699183114976329639808, −2.28433241393317875635177771980, 2.28433241393317875635177771980, 3.08706149699183114976329639808, 4.19200919580490190485706042531, 5.21816996360135943270646722740, 5.96676809676042291135130153753, 7.31288573754649677519000114720, 7.948930766172280682723796366646, 9.287547370050828083417562098063, 10.22832246189667208581791355391, 11.46565112135528399482915620073

Graph of the $Z$-function along the critical line