Properties

Label 2-475-1.1-c1-0-2
Degree $2$
Conductor $475$
Sign $1$
Analytic cond. $3.79289$
Root an. cond. $1.94753$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.906·2-s − 3.21·3-s − 1.17·4-s − 2.91·6-s − 2.59·7-s − 2.88·8-s + 7.35·9-s + 0.741·11-s + 3.78·12-s + 3.78·13-s − 2.35·14-s − 0.258·16-s + 3.16·17-s + 6.67·18-s − 19-s + 8.35·21-s + 0.672·22-s − 0.570·23-s + 9.27·24-s + 3.43·26-s − 14.0·27-s + 3.05·28-s + 6·29-s + 5.83·31-s + 5.52·32-s − 2.38·33-s + 2.87·34-s + ⋯
L(s)  = 1  + 0.641·2-s − 1.85·3-s − 0.588·4-s − 1.19·6-s − 0.981·7-s − 1.01·8-s + 2.45·9-s + 0.223·11-s + 1.09·12-s + 1.05·13-s − 0.629·14-s − 0.0647·16-s + 0.768·17-s + 1.57·18-s − 0.229·19-s + 1.82·21-s + 0.143·22-s − 0.119·23-s + 1.89·24-s + 0.673·26-s − 2.69·27-s + 0.577·28-s + 1.11·29-s + 1.04·31-s + 0.977·32-s − 0.415·33-s + 0.492·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(475\)    =    \(5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(3.79289\)
Root analytic conductor: \(1.94753\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{475} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 475,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7406636871\)
\(L(\frac12)\) \(\approx\) \(0.7406636871\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
19 \( 1 + T \)
good2 \( 1 - 0.906T + 2T^{2} \)
3 \( 1 + 3.21T + 3T^{2} \)
7 \( 1 + 2.59T + 7T^{2} \)
11 \( 1 - 0.741T + 11T^{2} \)
13 \( 1 - 3.78T + 13T^{2} \)
17 \( 1 - 3.16T + 17T^{2} \)
23 \( 1 + 0.570T + 23T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 - 5.83T + 31T^{2} \)
37 \( 1 - 1.40T + 37T^{2} \)
41 \( 1 + 3.83T + 41T^{2} \)
43 \( 1 - 2.59T + 43T^{2} \)
47 \( 1 + 5.08T + 47T^{2} \)
53 \( 1 - 0.160T + 53T^{2} \)
59 \( 1 - 8.35T + 59T^{2} \)
61 \( 1 + 8.57T + 61T^{2} \)
67 \( 1 - 14.8T + 67T^{2} \)
71 \( 1 - 3.64T + 71T^{2} \)
73 \( 1 - 10.8T + 73T^{2} \)
79 \( 1 - 1.83T + 79T^{2} \)
83 \( 1 - 4.19T + 83T^{2} \)
89 \( 1 + 16.9T + 89T^{2} \)
97 \( 1 - 3.78T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20020273511201676132153580325, −10.18772366459226803995714671017, −9.607038281480831581765178944945, −8.285944194876819456103630056013, −6.67752458474272111826444254441, −6.21645071576023168405639739515, −5.39421644333512201886752838619, −4.44968527760017289098763587493, −3.45307914098692482568328632010, −0.804271158418313148776300199802, 0.804271158418313148776300199802, 3.45307914098692482568328632010, 4.44968527760017289098763587493, 5.39421644333512201886752838619, 6.21645071576023168405639739515, 6.67752458474272111826444254441, 8.285944194876819456103630056013, 9.607038281480831581765178944945, 10.18772366459226803995714671017, 11.20020273511201676132153580325

Graph of the $Z$-function along the critical line