L(s) = 1 | + 5-s + 7-s − 3·9-s + 2·11-s − 3·17-s + 6·19-s − 4·23-s − 4·25-s − 7·29-s − 4·31-s + 35-s − 9·37-s − 9·41-s + 10·43-s − 3·45-s + 2·47-s + 49-s + 9·53-s + 2·55-s − 14·59-s − 5·61-s − 3·63-s + 8·67-s − 10·71-s + 7·73-s + 2·77-s + 2·79-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 0.377·7-s − 9-s + 0.603·11-s − 0.727·17-s + 1.37·19-s − 0.834·23-s − 4/5·25-s − 1.29·29-s − 0.718·31-s + 0.169·35-s − 1.47·37-s − 1.40·41-s + 1.52·43-s − 0.447·45-s + 0.291·47-s + 1/7·49-s + 1.23·53-s + 0.269·55-s − 1.82·59-s − 0.640·61-s − 0.377·63-s + 0.977·67-s − 1.18·71-s + 0.819·73-s + 0.227·77-s + 0.225·79-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 4732 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4732 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 - T \) |
| 13 | \( 1 \) |
good | 3 | \( 1 + p T^{2} \) |
| 5 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + 3 T + p T^{2} \) |
| 19 | \( 1 - 6 T + p T^{2} \) |
| 23 | \( 1 + 4 T + p T^{2} \) |
| 29 | \( 1 + 7 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 + 9 T + p T^{2} \) |
| 41 | \( 1 + 9 T + p T^{2} \) |
| 43 | \( 1 - 10 T + p T^{2} \) |
| 47 | \( 1 - 2 T + p T^{2} \) |
| 53 | \( 1 - 9 T + p T^{2} \) |
| 59 | \( 1 + 14 T + p T^{2} \) |
| 61 | \( 1 + 5 T + p T^{2} \) |
| 67 | \( 1 - 8 T + p T^{2} \) |
| 71 | \( 1 + 10 T + p T^{2} \) |
| 73 | \( 1 - 7 T + p T^{2} \) |
| 79 | \( 1 - 2 T + p T^{2} \) |
| 83 | \( 1 - 6 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.88716639104302922253647627403, −7.29043970452560977703535215221, −6.39413776818390235054851215363, −5.63568782118636600056414911566, −5.23143914553982915771965990216, −4.07127399693850067619287303334, −3.38355919618083592469895573273, −2.30370152395396656566916138935, −1.52334018066988754327439791711, 0,
1.52334018066988754327439791711, 2.30370152395396656566916138935, 3.38355919618083592469895573273, 4.07127399693850067619287303334, 5.23143914553982915771965990216, 5.63568782118636600056414911566, 6.39413776818390235054851215363, 7.29043970452560977703535215221, 7.88716639104302922253647627403