Properties

Label 2-4732-1.1-c1-0-63
Degree $2$
Conductor $4732$
Sign $-1$
Analytic cond. $37.7852$
Root an. cond. $6.14696$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 3·9-s + 2·11-s − 3·17-s + 6·19-s − 4·23-s − 4·25-s − 7·29-s − 4·31-s + 35-s − 9·37-s − 9·41-s + 10·43-s − 3·45-s + 2·47-s + 49-s + 9·53-s + 2·55-s − 14·59-s − 5·61-s − 3·63-s + 8·67-s − 10·71-s + 7·73-s + 2·77-s + 2·79-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s − 9-s + 0.603·11-s − 0.727·17-s + 1.37·19-s − 0.834·23-s − 4/5·25-s − 1.29·29-s − 0.718·31-s + 0.169·35-s − 1.47·37-s − 1.40·41-s + 1.52·43-s − 0.447·45-s + 0.291·47-s + 1/7·49-s + 1.23·53-s + 0.269·55-s − 1.82·59-s − 0.640·61-s − 0.377·63-s + 0.977·67-s − 1.18·71-s + 0.819·73-s + 0.227·77-s + 0.225·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4732 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4732 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4732\)    =    \(2^{2} \cdot 7 \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(37.7852\)
Root analytic conductor: \(6.14696\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4732,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + p T^{2} \)
5 \( 1 - T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 7 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + 9 T + p T^{2} \)
41 \( 1 + 9 T + p T^{2} \)
43 \( 1 - 10 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 + 14 T + p T^{2} \)
61 \( 1 + 5 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.88716639104302922253647627403, −7.29043970452560977703535215221, −6.39413776818390235054851215363, −5.63568782118636600056414911566, −5.23143914553982915771965990216, −4.07127399693850067619287303334, −3.38355919618083592469895573273, −2.30370152395396656566916138935, −1.52334018066988754327439791711, 0, 1.52334018066988754327439791711, 2.30370152395396656566916138935, 3.38355919618083592469895573273, 4.07127399693850067619287303334, 5.23143914553982915771965990216, 5.63568782118636600056414911566, 6.39413776818390235054851215363, 7.29043970452560977703535215221, 7.88716639104302922253647627403

Graph of the $Z$-function along the critical line